BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 23872261)

  • 1. Methylmercury exposure increases lipocalin related (lpr) and decreases activated in blocked unfolded protein response (abu) genes and specific miRNAs in Caenorhabditis elegans.
    Rudgalvyte M; VanDuyn N; Aarnio V; Heikkinen L; Peltonen J; Lakso M; Nass R; Wong G
    Toxicol Lett; 2013 Oct; 222(2):189-96. PubMed ID: 23872261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic MeHg exposure modifies the histone H3K4me3 epigenetic landscape in Caenorhabditis elegans.
    Rudgalvyte M; Peltonen J; Lakso M; Wong G
    Comp Biochem Physiol C Toxicol Pharmacol; 2017 Jan; 191():109-116. PubMed ID: 27717699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-Seq Reveals Acute Manganese Exposure Increases Endoplasmic Reticulum Related and Lipocalin mRNAs in Caenorhabditis elegans.
    Rudgalvyte M; Peltonen J; Lakso M; Nass R; Wong G
    J Biochem Mol Toxicol; 2016 Feb; 30(2):97-105. PubMed ID: 26418576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic ethanol exposure increases cytochrome P-450 and decreases activated in blocked unfolded protein response gene family transcripts in caenorhabditis elegans.
    Peltonen J; Aarnio V; Heikkinen L; Lakso M; Wong G
    J Biochem Mol Toxicol; 2013 Mar; 27(3):219-28. PubMed ID: 23381935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Modulatory Role of sti-1 in Methylmercury-Induced Toxicity in Caenorhabditis elegans.
    Ke T; Santamaria A; Farina M; Rocha JBT; Bowman AB; Aschner M
    Neurotox Res; 2022 Jun; 40(3):837-846. PubMed ID: 35471723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methylmercury Induces Metabolic Alterations in Caenorhabditis elegans: Role for C/EBP Transcription Factor.
    Caito SW; Newell-Caito J; Martell M; Crawford N; Aschner M
    Toxicol Sci; 2020 Mar; 174(1):112-123. PubMed ID: 31851340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined exposure to methylmercury and manganese during L1 larval stage causes motor dysfunction, cholinergic and monoaminergic up-regulation and oxidative stress in L4 Caenorhabditis elegans.
    Schetinger MRC; Peres TV; Arantes LP; Carvalho F; Dressler V; Heidrich G; Bowman AB; Aschner M
    Toxicology; 2019 Jan; 411():154-162. PubMed ID: 30336192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (-)-Epigallocatechin-3-gallate attenuates the toxicity of methylmercury in Caenorhabditis elegans by activating SKN-1.
    Chen M; Wang F; Cao JJ; Han X; Lu WW; Ji X; Chen WH; Lu WQ; Liu AL
    Chem Biol Interact; 2019 Jul; 307():125-135. PubMed ID: 31047916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SKN-1/Nrf2 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of methylmercury toxicity.
    Vanduyn N; Settivari R; Wong G; Nass R
    Toxicol Sci; 2010 Dec; 118(2):613-24. PubMed ID: 20855423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benzo-α-pyrene induced oxidative stress in Caenorhabditis elegans and the potential involvements of microRNA.
    Wu H; Huang C; Taki FA; Zhang Y; Dobbins DL; Li L; Yan H; Pan X
    Chemosphere; 2015 Nov; 139():496-503. PubMed ID: 26291679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive Analysis of SiNPs on the Genome-Wide Transcriptional Changes in
    Liang S; Duan J; Hu H; Zhang J; Gao S; Jing H; Li G; Sun Z
    Int J Nanomedicine; 2020; 15():5227-5237. PubMed ID: 32801688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A survival pathway for Caenorhabditis elegans with a blocked unfolded protein response.
    Urano F; Calfon M; Yoneda T; Yun C; Kiraly M; Clark SG; Ron D
    J Cell Biol; 2002 Aug; 158(4):639-46. PubMed ID: 12186849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic Efficacy of the N,N' Bis-(2-Mercaptoethyl) Isophthalamide Chelator for Methylmercury Intoxication in Caenorhabditis elegans.
    Ke T; Bornhorst J; Schwerdtle T; Santamaría A; Soare FAA; Rocha JBT; Farina M; Bowman AB; Aschner M
    Neurotox Res; 2020 Jun; 38(1):133-144. PubMed ID: 32236898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR-124/ATF-6, a novel lifespan extension pathway of Astragalus polysaccharide in Caenorhabditis elegans.
    Wang N; Liu J; Xie F; Gao X; Ye JH; Sun LY; Wei R; Ai J
    J Cell Biochem; 2015 Feb; 116(2):242-51. PubMed ID: 25186652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Profiling Identifies Potential Regulatory Proteins Involved in Development from Dauer Stage to L4 Stage in Caenorhabditis elegans.
    Kim S; Lee HJ; Hahm JH; Jeong SK; Park DH; Hancock WS; Paik YK
    J Proteome Res; 2016 Feb; 15(2):531-9. PubMed ID: 26751275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Human LRRK2 in Acute Methylmercury Toxicity in Caenorhabditis elegans.
    Ke T; Rocha JBT; Tinkov AA; Santamaria A; Bowman AB; Aschner M
    Neurochem Res; 2021 Nov; 46(11):2991-3002. PubMed ID: 34272628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex-Specific Response of Caenorhabditis elegans to Methylmercury Toxicity.
    Ruszkiewicz JA; Teixeira de Macedo G; Miranda-Vizuete A; Bowman AB; Bornhorst J; Schwerdtle T; Antunes Soares FA; Aschner M
    Neurotox Res; 2019 Jan; 35(1):208-216. PubMed ID: 30155682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small RNA in situ hybridization in Caenorhabditis elegans, combined with RNA-seq, identifies germline-enriched microRNAs.
    McEwen TJ; Yao Q; Yun S; Lee CY; Bennett KL
    Dev Biol; 2016 Oct; 418(2):248-257. PubMed ID: 27521456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of lin-4 miRNA expression, organismal growth and development by a conserved RNA binding protein in C. elegans.
    Bracht JR; Van Wynsberghe PM; Mondol V; Pasquinelli AE
    Dev Biol; 2010 Dec; 348(2):210-21. PubMed ID: 20937268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The activation of the oxidative stress response transcription factor SKN-1 in Caenorhabditis elegans by mitis group streptococci.
    Naji A; Houston Iv J; Skalley Rog C; Al Hatem A; Rizvi S; van der Hoeven R
    PLoS One; 2018; 13(8):e0202233. PubMed ID: 30114261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.