BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 23872597)

  • 1. TARP γ-7 selectively enhances synaptic expression of calcium-permeable AMPARs.
    Studniarczyk D; Coombs I; Cull-Candy SG; Farrant M
    Nat Neurosci; 2013 Sep; 16(9):1266-74. PubMed ID: 23872597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Channel properties reveal differential expression of TARPed and TARPless AMPARs in stargazer neurons.
    Bats C; Soto D; Studniarczyk D; Farrant M; Cull-Candy SG
    Nat Neurosci; 2012 Jun; 15(6):853-61. PubMed ID: 22581185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stargazin (TARP gamma-2) is required for compartment-specific AMPA receptor trafficking and synaptic plasticity in cerebellar stellate cells.
    Jackson AC; Nicoll RA
    J Neurosci; 2011 Mar; 31(11):3939-52. PubMed ID: 21411637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TARP γ-2 Is Required for Inflammation-Associated AMPA Receptor Plasticity within Lamina II of the Spinal Cord Dorsal Horn.
    Sullivan SJ; Farrant M; Cull-Candy SG
    J Neurosci; 2017 Jun; 37(25):6007-6020. PubMed ID: 28559374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane AMPAR regulatory protein γ-2 is required for the modulation of GABA release by presynaptic AMPARs.
    Rigby M; Cull-Candy SG; Farrant M
    J Neurosci; 2015 Mar; 35(10):4203-14. PubMed ID: 25762667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxiliary Subunit GSG1L Acts to Suppress Calcium-Permeable AMPA Receptor Function.
    McGee TP; Bats C; Farrant M; Cull-Candy SG
    J Neurosci; 2015 Dec; 35(49):16171-9. PubMed ID: 26658868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TARP γ-2 and γ-8 Differentially Control AMPAR Density Across Schaffer Collateral/Commissural Synapses in the Hippocampal CA1 Area.
    Yamasaki M; Fukaya M; Yamazaki M; Azechi H; Natsume R; Abe M; Sakimura K; Watanabe M
    J Neurosci; 2016 Apr; 36(15):4296-312. PubMed ID: 27076426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms contributing to TARP regulation of channel conductance and polyamine block of calcium-permeable AMPA receptors.
    Soto D; Coombs ID; Gratacòs-Batlle E; Farrant M; Cull-Candy SG
    J Neurosci; 2014 Aug; 34(35):11673-83. PubMed ID: 25164663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors.
    Soto D; Coombs ID; Kelly L; Farrant M; Cull-Candy SG
    Nat Neurosci; 2007 Oct; 10(10):1260-7. PubMed ID: 17873873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental expression of Ca2+-permeable AMPA receptors underlies depolarization-induced long-term depression at mossy fiber CA3 pyramid synapses.
    Ho MT; Pelkey KA; Topolnik L; Petralia RS; Takamiya K; Xia J; Huganir RL; Lacaille JC; McBain CJ
    J Neurosci; 2007 Oct; 27(43):11651-62. PubMed ID: 17959808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PICK1 mediates transient synaptic expression of GluA2-lacking AMPA receptors during glycine-induced AMPA receptor trafficking.
    Jaafari N; Henley JM; Hanley JG
    J Neurosci; 2012 Aug; 32(34):11618-30. PubMed ID: 22915106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trafficking of calcium-permeable and calcium-impermeable AMPA receptors in nucleus accumbens medium spiny neurons co-cultured with prefrontal cortex neurons.
    Werner CT; Murray CH; Reimers JM; Chauhan NM; Woo KK; Molla HM; Loweth JA; Wolf ME
    Neuropharmacology; 2017 Apr; 116():224-232. PubMed ID: 27993521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmembrane AMPA receptor regulatory proteins and AMPA receptor function in the cerebellum.
    Coombs ID; Cull-Candy SG
    Neuroscience; 2009 Sep; 162(3):656-65. PubMed ID: 19185052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced functional detection of synaptic calcium-permeable AMPA receptors using intracellular NASPM.
    Coombs I; Bats C; Sexton CA; Studniarczyk D; Cull-Candy SG; Farrant M
    Elife; 2023 Apr; 12():. PubMed ID: 37042655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing TARP modulation of AMPA receptor conductance with polyamine toxins.
    Jackson AC; Milstein AD; Soto D; Farrant M; Cull-Candy SG; Nicoll RA
    J Neurosci; 2011 May; 31(20):7511-20. PubMed ID: 21593335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stoichiometry of AMPA receptors and TARPs varies by neuronal cell type.
    Shi Y; Lu W; Milstein AD; Nicoll RA
    Neuron; 2009 Jun; 62(5):633-40. PubMed ID: 19524523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca
    Cull-Candy SG; Farrant M
    J Physiol; 2021 May; 599(10):2655-2671. PubMed ID: 33533533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, gamma-5.
    Soto D; Coombs ID; Renzi M; Zonouzi M; Farrant M; Cull-Candy SG
    Nat Neurosci; 2009 Mar; 12(3):277-85. PubMed ID: 19234459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A role of TARPs in the expression and plasticity of calcium-permeable AMPARs: evidence from cerebellar neurons and glia.
    Bats C; Farrant M; Cull-Candy SG
    Neuropharmacology; 2013 Nov; 74():76-85. PubMed ID: 23583927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative contribution of TARPs γ-2 and γ-7 to cerebellar excitatory synaptic transmission and motor behavior.
    Yamazaki M; Le Pichon CE; Jackson AC; Cerpas M; Sakimura K; Scearce-Levie K; Nicoll RA
    Proc Natl Acad Sci U S A; 2015 Jan; 112(4):E371-9. PubMed ID: 25583485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.