These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 23872846)

  • 41. Proteorhodopsin.
    Bamann C; Bamberg E; Wachtveitl J; Glaubitz C
    Biochim Biophys Acta; 2014 May; 1837(5):614-25. PubMed ID: 24060527
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Breaking the carboxyl rule: lysine 96 facilitates reprotonation of the Schiff base in the photocycle of a retinal protein from Exiguobacterium sibiricum.
    Balashov SP; Petrovskaya LE; Imasheva ES; Lukashev EP; Dioumaev AK; Wang JM; Sychev SV; Dolgikh DA; Rubin AB; Kirpichnikov MP; Lanyi JK
    J Biol Chem; 2013 Jul; 288(29):21254-21265. PubMed ID: 23696649
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crystallization and preliminary X-ray crystallographic analysis of a blue-light-absorbing proteorhodopsin.
    Wang N; Wang M; Gao Y; Ran T; Lan Y; Wang J; Xu L; Wang W
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Mar; 68(Pt 3):281-3. PubMed ID: 22442222
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proteorhodopsin: characterisation of 2D crystals by electron microscopy and solid state NMR.
    Shastri S; Vonck J; Pfleger N; Haase W; Kuehlbrandt W; Glaubitz C
    Biochim Biophys Acta; 2007 Dec; 1768(12):3012-9. PubMed ID: 17964280
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proteorhodopsin Photocycle Kinetics Between pH 5 and pH 9.
    Köhler T; Weber I; Glaubitz C; Wachtveitl J
    Photochem Photobiol; 2017 May; 93(3):762-771. PubMed ID: 28500708
    [TBL] [Abstract][Full Text] [Related]  

  • 46. pH-dependent transitions in xanthorhodopsin.
    Imasheva ES; Balashov SP; Wang JM; Lanyi JK
    Photochem Photobiol; 2006; 82(6):1406-13. PubMed ID: 16649816
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cation-Specific Conformations in a Dual-Function Ion-Pumping Microbial Rhodopsin.
    da Silva GF; Goblirsch BR; Tsai AL; Spudich JL
    Biochemistry; 2015 Jun; 54(25):3950-9. PubMed ID: 26037033
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energetics of the H-Bond Network in
    Noji T; Chiba Y; Saito K; Ishikita H
    Biochemistry; 2024 Jun; 63(11):1505-1512. PubMed ID: 38745402
    [No Abstract]   [Full Text] [Related]  

  • 49. A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties.
    Sudo Y; Ihara K; Kobayashi S; Suzuki D; Irieda H; Kikukawa T; Kandori H; Homma M
    J Biol Chem; 2011 Feb; 286(8):5967-76. PubMed ID: 21135094
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The directed cooperative assembly of proteorhodopsin into 2D and 3D polarized arrays.
    Liang H; Whited G; Nguyen C; Stucky GD
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8212-7. PubMed ID: 17488827
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology.
    Pinhassi J; DeLong EF; Béjà O; González JM; Pedrós-Alió C
    Microbiol Mol Biol Rev; 2016 Dec; 80(4):929-54. PubMed ID: 27630250
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Omega Rhodopsins: A Versatile Class of Microbial Rhodopsins.
    Kwon SK; Jun SH; Kim JF
    J Microbiol Biotechnol; 2020 May; 30(5):633-641. PubMed ID: 32482928
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oriented Insertion of ESR-Containing Hybrid Proteins in Proteoliposomes.
    Petrovskaya LE; Lukashev EP; Mamedov MD; Kryukova EA; Balashov SP; Dolgikh DA; Rubin AB; Kirpichnikov MP; Siletsky SA
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108532
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystal structure of schizorhodopsin reveals mechanism of inward proton pumping.
    Higuchi A; Shihoya W; Konno M; Ikuta T; Kandori H; Inoue K; Nureki O
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33790007
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural Mechanism for Light-driven Transport by a New Type of Chloride Ion Pump, Nonlabens marinus Rhodopsin-3.
    Hosaka T; Yoshizawa S; Nakajima Y; Ohsawa N; Hato M; DeLong EF; Kogure K; Yokoyama S; Kimura-Someya T; Iwasaki W; Shirouzu M
    J Biol Chem; 2016 Aug; 291(34):17488-17495. PubMed ID: 27365396
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Strongly hydrogen-bonded water molecules in the Schiff base region of rhodopsins.
    Furutani Y; Shibata M; Kandori H
    Photochem Photobiol Sci; 2005 Sep; 4(9):661-6. PubMed ID: 16121274
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cryo-EM structure and dynamics of the green-light absorbing proteorhodopsin.
    Hirschi S; Kalbermatter D; Ucurum Z; Lemmin T; Fotiadis D
    Nat Commun; 2021 Jul; 12(1):4107. PubMed ID: 34226545
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Different structural changes occur in blue- and green-proteorhodopsins during the primary photoreaction.
    Amsden JJ; Kralj JM; Bergo VB; Spudich EN; Spudich JL; Rothschild KJ
    Biochemistry; 2008 Nov; 47(44):11490-8. PubMed ID: 18842006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin.
    Ikeda D; Furutani Y; Kandori H
    Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low temperature FTIR spectroscopy provides new insights in the pH-dependent proton pathway of proteorhodopsin.
    Verhoefen MK; Schäfer G; Shastri S; Weber I; Glaubitz C; Mäntele W; Wachtveitl J
    Biochim Biophys Acta; 2011 Dec; 1807(12):1583-90. PubMed ID: 21939636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.