BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23872930)

  • 21. Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects.
    Degnan PH; Lazarus AB; Wernegreen JJ
    Genome Res; 2005 Aug; 15(8):1023-33. PubMed ID: 16077009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The roles of positive and negative selection in the molecular evolution of insect endosymbionts.
    Fry AJ; Wernegreen JJ
    Gene; 2005 Aug; 355():1-10. PubMed ID: 16039807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of host demography and evolutionary history on endosymbiont molecular evolution: A test in carpenter ants (genus
    Manthey JD; Girón JC; Hruska JP
    Ecol Evol; 2022 Jul; 12(7):e9026. PubMed ID: 35795355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Replication of the endosymbiotic bacterium Blochmannia floridanus is correlated with the developmental and reproductive stages of its ant host.
    Wolschin F; Hölldobler B; Gross R; Zientz E
    Appl Environ Microbiol; 2004 Jul; 70(7):4096-102. PubMed ID: 15240288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immune response of the ant Camponotus floridanus against pathogens and its obligate mutualistic endosymbiont.
    Ratzka C; Liang C; Dandekar T; Gross R; Feldhaar H
    Insect Biochem Mol Biol; 2011 Aug; 41(8):529-36. PubMed ID: 21440063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrastructure of the Bacteriocytes in the Midgut of the Carpenter ant
    Gonçalves WG; Fernandes KM; Silva APA; Gonçalves DG; Fiaz M; Serrão JE
    Microsc Microanal; 2020 Dec; 26(6):1236-1244. PubMed ID: 32924896
    [TBL] [Abstract][Full Text] [Related]  

  • 27. De novo sequencing, diploid assembly, and annotation of the black carpenter ant, Camponotus pennsylvanicus, and its symbionts by one person for $1000, using nanopore sequencing.
    Faulk C
    Nucleic Acids Res; 2023 Jan; 51(1):17-28. PubMed ID: 35724982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blochmannia endosymbionts and their host, the ant Camponotus fellah: cuticular hydrocarbons and melanization.
    José de Souza D; Devers S; Lenoir A
    C R Biol; 2011 Oct; 334(10):737-41. PubMed ID: 21943523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Origin and elaboration of a major evolutionary transition in individuality.
    Rafiqi AM; Rajakumar A; Abouheif E
    Nature; 2020 Sep; 585(7824):239-244. PubMed ID: 32879485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica.
    López-Sánchez MJ; Neef A; Peretó J; Patiño-Navarrete R; Pignatelli M; Latorre A; Moya A
    PLoS Genet; 2009 Nov; 5(11):e1000721. PubMed ID: 19911043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purifying selection, sequence composition, and context-specific indel mutations shape intraspecific variation in a bacterial endosymbiont.
    Williams LE; Wernegreen JJ
    Genome Biol Evol; 2012; 4(1):44-51. PubMed ID: 22117087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tissue localization of the endosymbiotic bacterium "Candidatus Blochmannia floridanus" in adults and larvae of the carpenter ant Camponotus floridanus.
    Sauer C; Dudaczek D; Hölldobler B; Gross R
    Appl Environ Microbiol; 2002 Sep; 68(9):4187-93. PubMed ID: 12200264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization.
    Schröder D; Deppisch H; Obermayer M; Krohne G; Stackebrandt E; Hôlldobler B; Goebel W; Gross R
    Mol Microbiol; 1996 Aug; 21(3):479-89. PubMed ID: 8866472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of and function predictions for previously conserved hypothetical or putative proteins in Blochmannia floridanus.
    Gaudermann P; Vogl I; Zientz E; Silva FJ; Moya A; Gross R; Dandekar T
    BMC Microbiol; 2006 Jan; 6():1. PubMed ID: 16401340
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Sinotte VM; Freedman SN; Ugelvig LV; Seid MA
    Insects; 2018 Jun; 9(2):. PubMed ID: 29857577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary forces in shaping the codon and amino acid usages in Blochmannia floridanus.
    Banerjee T; Basak S; Gupta SK; Ghosh TC
    J Biomol Struct Dyn; 2004 Aug; 22(1):13-23. PubMed ID: 15214801
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Symbiont interactions in a tripartite mutualism: exploring the presence and impact of antagonism between two fungus-growing ant mutualists.
    Poulsen M; Currie CR
    PLoS One; 2010 Jan; 5(1):e8748. PubMed ID: 20090958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution and Diversity of Inherited Spiroplasma Symbionts in Myrmica Ants.
    Ballinger MJ; Moore LD; Perlman SJ
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29196290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antagonistic bacterial interactions help shape host-symbiont dynamics within the fungus-growing ant-microbe mutualism.
    Poulsen M; Erhardt DP; Molinaro DJ; Lin TL; Currie CR
    PLoS One; 2007 Sep; 2(9):e960. PubMed ID: 17896000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Symbiont recognition of mutualistic bacteria by Acromyrmex leaf-cutting ants.
    Zhang MM; Poulsen M; Currie CR
    ISME J; 2007 Aug; 1(4):313-20. PubMed ID: 18043642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.