BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23872974)

  • 1. Identifying RNA editing sites in miRNAs by deep sequencing.
    Alon S; Eisenberg E
    Methods Mol Biol; 2013; 1038():159-70. PubMed ID: 23872974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using deep sequencing data for identification of editing sites in mature miRNAs.
    Alon S; Eisenberg E
    Methods Mol Biol; 2015; 1269():231-42. PubMed ID: 25577382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic identification of edited microRNAs in the human brain.
    Alon S; Mor E; Vigneault F; Church GM; Locatelli F; Galeano F; Gallo A; Shomron N; Eisenberg E
    Genome Res; 2012 Aug; 22(8):1533-40. PubMed ID: 22499667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DREAM: a webserver for the identification of editing sites in mature miRNAs using deep sequencing data.
    Alon S; Erew M; Eisenberg E
    Bioinformatics; 2015 Aug; 31(15):2568-70. PubMed ID: 25840043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A-to-I editing challenger or ally to the microRNA process.
    Ohman M
    Biochimie; 2007 Oct; 89(10):1171-6. PubMed ID: 17628290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for validation of miRNA sequence variants and the cleavage of their targets.
    Jeong DH; Green PJ
    Methods; 2012 Oct; 58(2):135-43. PubMed ID: 22922269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revealing editing and SNPs of microRNAs in colon tissues by analyzing high-throughput sequencing profiles of small RNAs.
    Zheng Y; Li T; Ren R; Shi D; Wang S
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S11. PubMed ID: 25521855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of canonical A-to-G editing events at 3' UTRs and microRNA target sites in human lungs using next-generation sequencing.
    Soundararajan R; Stearns TM; Griswold AL; Mehta A; Czachor A; Fukumoto J; Lockey RF; King BL; Kolliputi N
    Oncotarget; 2015 Nov; 6(34):35726-36. PubMed ID: 26486088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate detection for a wide range of mutation and editing sites of microRNAs from small RNA high-throughput sequencing profiles.
    Zheng Y; Ji B; Song R; Wang S; Li T; Zhang X; Chen K; Li T; Li J
    Nucleic Acids Res; 2016 Aug; 44(14):e123. PubMed ID: 27229138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of high-throughput sequencing methods for plant microRNA research.
    Ma X; Tang Z; Qin J; Meng Y
    RNA Biol; 2015; 12(7):709-19. PubMed ID: 26016494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of RNA Editing and ADARs on miRNA Biogenesis and Function.
    Heale BS; Keegan LP; O'Connell MA
    Adv Exp Med Biol; 2011; 700():76-84. PubMed ID: 21755475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MiRNA editing.
    Dupuis DE; Maas S
    Methods Mol Biol; 2010; 667():267-79. PubMed ID: 20827540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypothesis: RNA editing of microRNA target sites in humans?
    Liang H; Landweber LF
    RNA; 2007 Apr; 13(4):463-7. PubMed ID: 17255198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and Transcriptome-Wide Identification of A-to-I RNA Editing Sites by ICE-Seq.
    Okada S; Sakurai M; Ueda H; Suzuki T
    Methods Enzymol; 2015; 560():331-53. PubMed ID: 26253977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep sequencing of grapevine flower and berry short RNA library for discovery of novel microRNAs and validation of precise sequences of grapevine microRNAs deposited in miRBase.
    Wang C; Wang X; Kibet NK; Song C; Zhang C; Li X; Han J; Fang J
    Physiol Plant; 2011 Sep; 143(1):64-81. PubMed ID: 21496033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A-to-I editing of microRNAs in the mammalian brain increases during development.
    Ekdahl Y; Farahani HS; Behm M; Lagergren J; Öhman M
    Genome Res; 2012 Aug; 22(8):1477-87. PubMed ID: 22645261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-mapping and the identification of editing sites in mature microRNAs in high-throughput sequencing libraries.
    de Hoon MJ; Taft RJ; Hashimoto T; Kanamori-Katayama M; Kawaji H; Kawano M; Kishima M; Lassmann T; Faulkner GJ; Mattick JS; Daub CO; Carninci P; Kawai J; Suzuki H; Hayashizaki Y
    Genome Res; 2010 Feb; 20(2):257-64. PubMed ID: 20051556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome-wide identification of adenosine-to-inosine editing using the ICE-seq method.
    Suzuki T; Ueda H; Okada S; Sakurai M
    Nat Protoc; 2015 May; 10(5):715-32. PubMed ID: 25855956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong conservation of inbred mouse strain microRNA loci but broad variation in brain microRNAs due to RNA editing and isomiR expression.
    Trontti K; Väänänen J; Sipilä T; Greco D; Hovatta I
    RNA; 2018 May; 24(5):643-655. PubMed ID: 29445025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.