BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23872974)

  • 61. Visualization of nucleotide substitutions in the (micro)transcriptome.
    Naqvi A; Cui T; Grigoriev A
    BMC Genomics; 2014; 15 Suppl 4(Suppl 4):S9. PubMed ID: 25055822
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transcriptogenomics identification and characterization of RNA editing sites in human primary monocytes using high-depth next generation sequencing data.
    Leong WM; Ripen AM; Mirsafian H; Mohamad SB; Merican AF
    Genomics; 2019 Jul; 111(4):899-905. PubMed ID: 29885984
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Human cancer tissues exhibit reduced A-to-I editing of miRNAs coupled with elevated editing of their targets.
    Pinto Y; Buchumenski I; Levanon EY; Eisenberg E
    Nucleic Acids Res; 2018 Jan; 46(1):71-82. PubMed ID: 29165639
    [TBL] [Abstract][Full Text] [Related]  

  • 64. miR-EdiTar: a database of predicted A-to-I edited miRNA target sites.
    Laganà A; Paone A; Veneziano D; Cascione L; Gasparini P; Carasi S; Russo F; Nigita G; Macca V; Giugno R; Pulvirenti A; Shasha D; Ferro A; Croce CM
    Bioinformatics; 2012 Dec; 28(23):3166-8. PubMed ID: 23044546
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characterization and comparison of human nuclear and cytosolic editomes.
    Chen L
    Proc Natl Acad Sci U S A; 2013 Jul; 110(29):E2741-7. PubMed ID: 23818636
    [TBL] [Abstract][Full Text] [Related]  

  • 66. MiREDiBase, a manually curated database of validated and putative editing events in microRNAs.
    Marceca GP; Distefano R; Tomasello L; Lagana A; Russo F; Calore F; Romano G; Bagnoli M; Gasparini P; Ferro A; Acunzo M; Ma Q; Croce CM; Nigita G
    Sci Data; 2021 Aug; 8(1):199. PubMed ID: 34349127
    [TBL] [Abstract][Full Text] [Related]  

  • 67. isoTar: Consensus Target Prediction with Enrichment Analysis for MicroRNAs Harboring Editing Sites and Other Variations.
    Distefano R; Nigita G; Veneziano D; Romano G; Croce CM; Acunzo M
    Methods Mol Biol; 2019; 1970():211-235. PubMed ID: 30963495
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Widespread
    Lopdell TJ; Hawkins V; Couldrey C; Tiplady K; Davis SR; Harris BL; Snell RG; Littlejohn MD
    RNA; 2019 Mar; 25(3):319-335. PubMed ID: 30530731
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Predicting RNA hyper-editing with a novel tool when unambiguous alignment is impossible.
    McKerrow WH; Savva YA; Rezaei A; Reenan RA; Lawrence CE
    BMC Genomics; 2017 Jul; 18(1):522. PubMed ID: 28693467
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Canonical A-to-I and C-to-U RNA editing is enriched at 3'UTRs and microRNA target sites in multiple mouse tissues.
    Gu T; Buaas FW; Simons AK; Ackert-Bicknell CL; Braun RE; Hibbs MA
    PLoS One; 2012; 7(3):e33720. PubMed ID: 22448268
    [TBL] [Abstract][Full Text] [Related]  

  • 71. MIRIA: a webserver for statistical, visual and meta-analysis of RNA editing data in mammals.
    Feng X; Wang Z; Li H; Li SC
    BMC Bioinformatics; 2019 Dec; 20(Suppl 24):596. PubMed ID: 31861975
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Identification of human RNA editing sites: A historical perspective.
    Ramaswami G; Li JB
    Methods; 2016 Sep; 107():42-7. PubMed ID: 27208508
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High-efficiency RNA cloning enables accurate quantification of miRNA expression by deep sequencing.
    Zhang Z; Lee JE; Riemondy K; Anderson EM; Yi R
    Genome Biol; 2013; 14(10):R109. PubMed ID: 24098942
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Genome-Wide Investigation and Functional Analysis of
    Wang Z; Feng X; Tang Z; Li SC
    Genes (Basel); 2019 Apr; 10(5):. PubMed ID: 31052161
    [TBL] [Abstract][Full Text] [Related]  

  • 75. REDItools: high-throughput RNA editing detection made easy.
    Picardi E; Pesole G
    Bioinformatics; 2013 Jul; 29(14):1813-4. PubMed ID: 23742983
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bioinformatic approaches for identification of A-to-I editing sites.
    Eisenberg E
    Curr Top Microbiol Immunol; 2012; 353():145-62. PubMed ID: 21751095
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Chemical Labeling and Affinity Capture of Inosine-Containing RNAs Using Acrylamidofluorescein.
    Knutson SD; Ayele TM; Heemstra JM
    Bioconjug Chem; 2018 Sep; 29(9):2899-2903. PubMed ID: 30148626
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Detection of RNA editing events in human cells using high-throughput sequencing.
    Chepelev I
    Methods Mol Biol; 2012; 815():91-102. PubMed ID: 22130986
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Human Brain Shows Recurrent Non-Canonical MicroRNA Editing Events Enriched for Seed Sequence with Possible Functional Consequence.
    Paul D; Ansari AH; Lal M; Mukhopadhyay A
    Noncoding RNA; 2020 Jun; 6(2):. PubMed ID: 32498345
    [TBL] [Abstract][Full Text] [Related]  

  • 80. High-throughput and ultra-sensitive single-cell profiling of multiple microRNAs and identification of human cancer.
    Li L; Lu M; Fan Y; Shui L; Xie S; Sheng R; Si H; Li Q; Wang Y; Tang B
    Chem Commun (Camb); 2019 Aug; 55(70):10404-10407. PubMed ID: 31402361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.