BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 23873039)

  • 1. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations.
    Lang GI; Rice DP; Hickman MJ; Sodergren E; Weinstock GM; Botstein D; Desai MM
    Nature; 2013 Aug; 500(7464):571-4. PubMed ID: 23873039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mSphere of Influence: Deterministic and Stochastic Processes Drive Microbial Evolution.
    Gerstein AC
    mSphere; 2023 Apr; 8(2):e0002223. PubMed ID: 36749101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution lineage tracking reveals travelling wave of adaptation in laboratory yeast.
    Nguyen Ba AN; Cvijović I; Rojas Echenique JI; Lawrence KR; Rego-Costa A; Liu X; Levy SF; Desai MM
    Nature; 2019 Nov; 575(7783):494-499. PubMed ID: 31723263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Targets of Selection in Laboratory Evolution Experiments.
    Martínez AA; Lang GI
    J Mol Evol; 2023 Jun; 91(3):345-355. PubMed ID: 36810618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sex speeds adaptation by altering the dynamics of molecular evolution.
    McDonald MJ; Rice DP; Desai MM
    Nature; 2016 Mar; 531(7593):233-6. PubMed ID: 26909573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae adapting to strong selection.
    Payen C; Di Rienzi SC; Ong GT; Pogachar JL; Sanchez JC; Sunshine AB; Raghuraman MK; Brewer BJ; Dunham MJ
    G3 (Bethesda); 2014 Mar; 4(3):399-409. PubMed ID: 24368781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombination Alters the Dynamics of Adaptation on Standing Variation in Laboratory Yeast Populations.
    Kosheleva K; Desai MM
    Mol Biol Evol; 2018 Jan; 35(1):180-201. PubMed ID: 29069452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyploidy can drive rapid adaptation in yeast.
    Selmecki AM; Maruvka YE; Richmond PA; Guillet M; Shoresh N; Sorenson AL; De S; Kishony R; Michor F; Dowell R; Pellman D
    Nature; 2015 Mar; 519(7543):349-52. PubMed ID: 25731168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive genome duplication affects patterns of molecular evolution in Saccharomyces cerevisiae.
    Fisher KJ; Buskirk SW; Vignogna RC; Marad DA; Lang GI
    PLoS Genet; 2018 May; 14(5):e1007396. PubMed ID: 29799840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast.
    Gresham D; Desai MM; Tucker CM; Jenq HT; Pai DA; Ward A; DeSevo CG; Botstein D; Dunham MJ
    PLoS Genet; 2008 Dec; 4(12):e1000303. PubMed ID: 19079573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standing genetic variation drives repeatable experimental evolution in outcrossing populations of Saccharomyces cerevisiae.
    Burke MK; Liti G; Long AD
    Mol Biol Evol; 2014 Dec; 31(12):3228-39. PubMed ID: 25172959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel genetic changes and nonparallel gene-environment interactions characterize the evolution of drug resistance in yeast.
    Gerstein AC; Lo DS; Otto SP
    Genetics; 2012 Sep; 192(1):241-52. PubMed ID: 22714405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fates of mutant lineages and the distribution of fitness effects of beneficial mutations in laboratory budding yeast populations.
    Frenkel EM; Good BH; Desai MM
    Genetics; 2014 Apr; 196(4):1217-26. PubMed ID: 24514901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial evolution. Global epistasis makes adaptation predictable despite sequence-level stochasticity.
    Kryazhimskiy S; Rice DP; Jerison ER; Desai MM
    Science; 2014 Jun; 344(6191):1519-1522. PubMed ID: 24970088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population subdivision and adaptation in asexual populations of Saccharomyces cerevisiae.
    Kryazhimskiy S; Rice DP; Desai MM
    Evolution; 2012 Jun; 66(6):1931-41. PubMed ID: 22671557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of clonal interference in the evolutionary dynamics of plasmid-host adaptation.
    Hughes JM; Lohman BK; Deckert GE; Nichols EP; Settles M; Abdo Z; Top EM
    mBio; 2012; 3(4):e00077-12. PubMed ID: 22761390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.
    Kishimoto T; Ying BW; Tsuru S; Iijima L; Suzuki S; Hashimoto T; Oyake A; Kobayashi H; Someya Y; Narisawa D; Yomo T
    PLoS Genet; 2015 Jul; 11(7):e1005392. PubMed ID: 26177190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic variation and the fate of beneficial mutations in asexual populations.
    Lang GI; Botstein D; Desai MM
    Genetics; 2011 Jul; 188(3):647-61. PubMed ID: 21546542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of Mutation Rates in Rapidly Adapting Asexual Populations.
    Good BH; Desai MM
    Genetics; 2016 Nov; 204(3):1249-1266. PubMed ID: 27646140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative evolutionary dynamics using high-resolution lineage tracking.
    Levy SF; Blundell JR; Venkataram S; Petrov DA; Fisher DS; Sherlock G
    Nature; 2015 Mar; 519(7542):181-6. PubMed ID: 25731169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.