These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23873765)

  • 1. Genus-optimized strategy for the identification of chlamydial type III secretion substrates.
    Hovis KM; Mojica S; McDermott JE; Pedersen L; Simhi C; Rank RG; Myers GS; Ravel J; Hsia RC; Bavoil PM
    Pathog Dis; 2013 Dec; 69(3):213-22. PubMed ID: 23873765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of type III secretion substrates of Chlamydia trachomatis using Yersinia enterocolitica as a heterologous system.
    da Cunha M; Milho C; Almeida F; Pais SV; Borges V; Maurício R; Borrego MJ; Gomes JP; Mota LJ
    BMC Microbiol; 2014 Feb; 14():40. PubMed ID: 24533538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of novel type III secretion chaperone-substrate complexes of Chlamydia trachomatis.
    Pais SV; Milho C; Almeida F; Mota LJ
    PLoS One; 2013; 8(2):e56292. PubMed ID: 23431368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved type III secretion system exerts important roles in Chlamydia trachomatis.
    Dai W; Li Z
    Int J Clin Exp Pathol; 2014; 7(9):5404-14. PubMed ID: 25337183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling.
    Chen YS; Bastidas RJ; Saka HA; Carpenter VK; Richards KL; Plano GV; Valdivia RH
    PLoS Pathog; 2014 Feb; 10(2):e1003954. PubMed ID: 24586162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of homologs of the Chlamydia trachomatis effector CteG reveals a family of Chlamydiaceae type III secreted proteins that can be delivered into host cells.
    Pereira IS; da Cunha M; Leal IP; Luís MP; Gonçalves P; Gonçalves C; Mota LJ
    Med Microbiol Immunol; 2024 Jul; 213(1):15. PubMed ID: 39008129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and Preliminary Characterization of Novel Type III Secreted Effector Proteins in Chlamydia trachomatis.
    McCaslin PN; Andersen SE; Icardi CM; Faris R; Steiert B; Smith P; Haider J; Weber MM
    Infect Immun; 2023 Jul; 91(7):e0049122. PubMed ID: 37347192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development.
    Hower S; Wolf K; Fields KA
    Mol Microbiol; 2009 Jun; 72(6):1423-37. PubMed ID: 19460098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New frontiers in type III secretion biology: the Chlamydia perspective.
    Mueller KE; Plano GV; Fields KA
    Infect Immun; 2014 Jan; 82(1):2-9. PubMed ID: 24126521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of putative Chlamydia trachomatis chaperones Scc2 and Scc3 and their use in the identification of type III secretion substrates.
    Fields KA; Fischer ER; Mead DJ; Hackstadt T
    J Bacteriol; 2005 Sep; 187(18):6466-78. PubMed ID: 16159780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Type III Secretion in
    Rucks EA
    Microbiol Mol Biol Rev; 2023 Sep; 87(3):e0003423. PubMed ID: 37358451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of β-lactamase reporter fusions as an indicator of effector protein secretion during infections with the obligate intracellular pathogen Chlamydia trachomatis.
    Mueller KE; Fields KA
    PLoS One; 2015; 10(8):e0135295. PubMed ID: 26258949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlamydia trachomatis Type III Secretion Proteins Regulate Transcription.
    Hanson BR; Slepenkin A; Peterson EM; Tan M
    J Bacteriol; 2015 Oct; 197(20):3238-44. PubMed ID: 26216849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Disruption of Chlamydia trachomatis Invasion by in Trans Expression of Dominant Negative Tarp Effectors.
    Parrett CJ; Lenoci RV; Nguyen B; Russell L; Jewett TJ
    Front Cell Infect Microbiol; 2016; 6():84. PubMed ID: 27602332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism.
    Fields KA; Hackstadt T
    Mol Microbiol; 2000 Dec; 38(5):1048-60. PubMed ID: 11123678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Context-Dependent Action of Scc4 Reinforces Control of the Type III Secretion System.
    Gao L; Cong Y; Plano GV; Rao X; Gisclair LN; Schesser Bartra S; Macnaughtan MA; Shen L
    J Bacteriol; 2020 Jul; 202(15):. PubMed ID: 32424009
    [No Abstract]   [Full Text] [Related]  

  • 17. Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis.
    Weber MM; Bauler LD; Lam J; Hackstadt T
    Infect Immun; 2015 Dec; 83(12):4710-8. PubMed ID: 26416906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Yersinia Yop-effector delivery by translocated YopE.
    Aili M; Isaksson EL; Carlsson SE; Wolf-Watz H; Rosqvist R; Francis MS
    Int J Med Microbiol; 2008 Apr; 298(3-4):183-92. PubMed ID: 17597003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle.
    Wolf K; Betts HJ; Chellas-Géry B; Hower S; Linton CN; Fields KA
    Mol Microbiol; 2006 Sep; 61(6):1543-55. PubMed ID: 16968227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration of chlamydial type III secretion system reconstitution in Escherichia coli.
    Bao X; Beatty WL; Fan H
    PLoS One; 2012; 7(12):e50833. PubMed ID: 23239989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.