These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 23873788)

  • 1. Enhancement of excess electron transfer efficiency in DNA containing a phenothiazine donor and multiple stable phenanthrenyl base pairs.
    Roethlisberger P; Wojciechowski F; Leumann CJ
    Chemistry; 2013 Aug; 19(35):11518-21. PubMed ID: 23873788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of Excess Electron Transfer through LUMO Gradients in DNA Containing Phenanthrenyl Base Surrogates.
    Roethlisberger P; Kaliginediand V; Leumann CJ
    Chemistry; 2017 Feb; 23(9):2022-2025. PubMed ID: 27992671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoinduced excess electron injection into DNA duplexes containing mismatched base pairs.
    Ito T; Kondo A; Hayashi A; Uchida T; Tanabe K; Nishimoto S
    Nucleic Acids Symp Ser (Oxf); 2008; (52):421-2. PubMed ID: 18776433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer through a stable phenanthrenyl pair in DNA.
    Grigorenko NA; Leumann CJ
    Chem Commun (Camb); 2008 Nov; (42):5417-9. PubMed ID: 18985229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathways of excess electron transfer in phenothiazine-tethered DNA containing single-base mismatches.
    Ito T; Kondo A; Kamashita T; Tanabe K; Yamada H; Nishimoto S
    Org Biomol Chem; 2009 May; 7(10):2077-81. PubMed ID: 19421445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive electron transfer in phenothiazine-modified DNA is dependent on the base sequence.
    Wagner C; Wagenknecht HA
    Chemistry; 2005 Mar; 11(6):1871-6. PubMed ID: 15685707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of a GC base pair on excitation energy transfer in DNA-assembled phenanthrene π-stacks.
    Garo F; Häner R
    Bioconjug Chem; 2012 Oct; 23(10):2105-13. PubMed ID: 22998150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drastic enhancement of excess electron-transfer efficiency through DNA by inserting consecutive 5-phenylethynyl-2'-deoxyuridines as a modulator.
    Tanaka M; Oguma K; Saito Y; Saito I
    Chem Commun (Camb); 2012 Sep; 48(75):9394-6. PubMed ID: 22890576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient charge transport in DNA diblock oligomers.
    Vura-Weis J; Wasielewski MR; Thazhathveetil AK; Lewis FD
    J Am Chem Soc; 2009 Jul; 131(28):9722-7. PubMed ID: 19558185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2-Phenanthrenyl-DNA: synthesis, pairing, and fluorescence properties.
    Grigorenko NA; Leumann CJ
    Chemistry; 2009; 15(3):639-45. PubMed ID: 19053088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoinduced reductive repair of thymine glycol: implications for excess electron transfer through DNA containing modified bases.
    Ito T; Kondo A; Terada S; Nishimoto S
    J Am Chem Soc; 2006 Aug; 128(33):10934-42. PubMed ID: 16910690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple, non-nucleosidic base surrogate increases the duplex stability of DNA containing an abasic site.
    Langenegger SM; Häner R
    Chem Biodivers; 2004 Feb; 1(2):259-64. PubMed ID: 17191844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selectivity in DNA interstrand-stacking.
    Langenegger SM; Häner R
    Bioorg Med Chem Lett; 2006 Oct; 16(19):5062-5. PubMed ID: 16876406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenothiazine as a redox-active DNA base substitute: comparison with phenothiazine-modified uridine.
    Wagner C; Wagenknecht HA
    Org Biomol Chem; 2008 Jan; 6(1):48-50. PubMed ID: 18075645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic coupling mediated by stacked [Thymine-Hg-Thymine] base pairs.
    Voityuk AA
    J Phys Chem B; 2006 Oct; 110(42):21010-3. PubMed ID: 17048919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electrochemical probe of DNA stacking in an antisense oligonucleotide containing a C3'-endo-locked sugar.
    Boon EM; Barton JK; Pradeepkumar PI; Isaksson J; Petit C; Chattopadhyaya J
    Angew Chem Int Ed Engl; 2002 Sep; 41(18):3402-5. PubMed ID: 12298045
    [No Abstract]   [Full Text] [Related]  

  • 17. X-ray structure of a lectin-bound DNA duplex containing an unnatural phenanthrenyl pair.
    Roethlisberger P; Istrate A; Marcaida Lopez MJ; Visini R; Stocker A; Reymond JL; Leumann CJ
    Chem Commun (Camb); 2016 Apr; 52(26):4749-52. PubMed ID: 26898721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and synthesis of triazolyl-donor/acceptor unnatural nucleosides and oligonucleotide probes containing triazolyl-phenanthrene nucleoside.
    Bag SS; Talukdar S; Das SK
    Curr Protoc Nucleic Acid Chem; 2014 Sep; 58():1.32.1-27. PubMed ID: 25199635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence dependence of excess electron transfer in DNA.
    Tainaka K; Fujitsuka M; Takada T; Kawai K; Majima T
    J Phys Chem B; 2010 Nov; 114(45):14657-63. PubMed ID: 20509700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-Mediated Electron Transfer: A Sensitive Probe of DNA-Protein Interactions.
    Rajski SR; Barton JK
    J Biomol Struct Dyn; 2000; 17 Suppl 1():285-91. PubMed ID: 22607436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.