These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23873845)

  • 21. Enhanced Hydrogen Generation from Formic Acid by Half-Sandwich Iridium(III) Complexes with Metal/NH Bifunctionality: A Pronounced Switch from Transfer Hydrogenation.
    Matsunami A; Kayaki Y; Ikariya T
    Chemistry; 2015 Sep; 21(39):13513-7. PubMed ID: 26277707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly efficient D2 generation by dehydrogenation of formic acid in D2O through H+/D+ exchange on an iridium catalyst: application to the synthesis of deuterated compounds by transfer deuterogenation.
    Wang WH; Hull JF; Muckerman JT; Fujita E; Hirose T; Himeda Y
    Chemistry; 2012 Jul; 18(30):9397-404. PubMed ID: 22718518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid.
    Xin Z; Zhang J; Sordakis K; Beller M; Du CX; Laurenczy G; Li Y
    ChemSusChem; 2018 Jul; 11(13):2077-2082. PubMed ID: 29722204
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogen production from formic acid solution by modified TiO2 and titanate nanotubes in a two-step system under visible light irradiation.
    Yeh HM; Lo SL; Chen MJ; Chen HY
    Water Sci Technol; 2014; 69(8):1676-81. PubMed ID: 24759528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogen storage in formic acid amine adducts.
    Boddien A; Gartner F; Mellmann D; Sponholz P; Junge H; Laurenczy G; Beller M
    Chimia (Aarau); 2011; 65(4):214-8. PubMed ID: 21678764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change.
    Kothandaraman J; Czaun M; Goeppert A; Haiges R; Jones JP; May RB; Prakash GK; Olah GA
    ChemSusChem; 2015 Apr; 8(8):1442-51. PubMed ID: 25824142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis.
    West JG; Huang D; Sorensen EJ
    Nat Commun; 2015 Dec; 6():10093. PubMed ID: 26656087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methanol-Water Aqueous-Phase Reforming with the Assistance of Dehydrogenases at Near-Room Temperature.
    Shen Y; Zhan Y; Li S; Ning F; Du Y; Huang Y; He T; Zhou X
    ChemSusChem; 2018 Mar; 11(5):864-871. PubMed ID: 29327513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methanol dehydrogenation by iridium N-heterocyclic carbene complexes.
    Campos J; Sharninghausen LS; Manas MG; Crabtree RH
    Inorg Chem; 2015 Jun; 54(11):5079-84. PubMed ID: 25615426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CO(2) fixation through hydrogenation by chemical or enzymatic methods.
    Beller M; Bornscheuer UT
    Angew Chem Int Ed Engl; 2014 Apr; 53(18):4527-8. PubMed ID: 24706361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formic acid dehydrogenation catalysed by ruthenium complexes bearing the tripodal ligands triphos and NP3.
    Mellone I; Peruzzini M; Rosi L; Mellmann D; Junge H; Beller M; Gonsalvi L
    Dalton Trans; 2013 Feb; 42(7):2495-501. PubMed ID: 23212285
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iridium-catalyzed hydrogen production from monosaccharides, disaccharide, cellulose, and lignocellulose.
    Li Y; Sponholz P; Nielsen M; Junge H; Beller M
    ChemSusChem; 2015 Mar; 8(5):804-8. PubMed ID: 25663162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic (transfer) deuterogenation in D2O as deuterium source with H2 and HCO2H as electron sources.
    Himeda Y; Miyazawa S; Onozawa-Komatsuzaki N; Hirose T; Kasuga K
    Dalton Trans; 2009 Aug; (32):6286-8. PubMed ID: 19655059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient disproportionation of formic acid to methanol using molecular ruthenium catalysts.
    Savourey S; Lefèvre G; Berthet JC; Thuéry P; Genre C; Cantat T
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10466-70. PubMed ID: 25088282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formic acid acting as an efficient oxygen scavenger in four-electron reduction of oxygen catalyzed by a heterodinuclear iridium-ruthenium complex in water.
    Fukuzumi S; Kobayashi T; Suenobu T
    J Am Chem Soc; 2010 Sep; 132(34):11866-7. PubMed ID: 20687556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards a practical setup for hydrogen production from formic acid.
    Sponholz P; Mellmann D; Junge H; Beller M
    ChemSusChem; 2013 Jul; 6(7):1172-6. PubMed ID: 23757329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogen storage and evolution catalysed by metal hydride complexes.
    Fukuzumi S; Suenobu T
    Dalton Trans; 2013 Jan; 42(1):18-28. PubMed ID: 23080061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved hydrogen production from formic acid on a Pd/C catalyst doped by potassium.
    Bulushev DA; Jia L; Beloshapkin S; Ross JR
    Chem Commun (Camb); 2012 May; 48(35):4184-6. PubMed ID: 22447125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile synthesis of nitrogen-doped graphene supported AuPd-CeO2 nanocomposites with high-performance for hydrogen generation from formic acid at room temperature.
    Wang ZL; Yan JM; Zhang YF; Ping Y; Wang HL; Jiang Q
    Nanoscale; 2014 Mar; 6(6):3073-7. PubMed ID: 24526095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A ruthenium-based biomimetic hydrogen cluster for efficient photocatalytic hydrogen generation from formic acid.
    Chang CH; Chen MH; Du WS; Gliniak J; Lin JH; Wu HH; Chan HF; Yu JS; Wu TK
    Chemistry; 2015 Apr; 21(17):6617-22. PubMed ID: 25766997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.