BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2387416)

  • 1. Submicromolar Ag+ increases passive Na+ permeability and inhibits the respiration-supported formation of Na+ gradient in Bacillus FTU vesicles.
    Semeykina AL; Skulachev VP
    FEBS Lett; 1990 Aug; 269(1):69-72. PubMed ID: 2387416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The H(+)-motive and Na(+)-motive respiratory chains in Bacillus FTU subcellular vesicles.
    Kostyrko VA; Semeykina AL; Skulachev VP; Smirnova IA; Vaghina ML; Verkhovskaya ML
    Eur J Biochem; 1991 Jun; 198(2):527-34. PubMed ID: 1645662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation of Bacillus FTU and Escherichia coli to alkaline conditions: the Na(+)-motive respiration.
    Avetisyan AV; Dibrov PA; Semeykina AL; Skulachev VP; Sokolov MV
    Biochim Biophys Acta; 1991 Dec; 1098(1):95-104. PubMed ID: 1751551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na+ is translocated at NADH:quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus.
    Tokuda H; Unemoto T
    J Biol Chem; 1984 Jun; 259(12):7785-90. PubMed ID: 6736026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Na+-motive terminal oxidase activity in an alkalo- and halo-tolerant Bacillus.
    Semeykina AL; Skulachev VP; Verkhovskaya ML; Bulygina ES; Chumakov KM
    Eur J Biochem; 1989 Aug; 183(3):671-8. PubMed ID: 2776760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Appearance of the Na(+)-motive terminal oxidase in Bacillus FTU grown under three different conditions lowering the delta mu H+ level.
    Semeykina AL; Skulachev VP
    FEBS Lett; 1992 Jan; 296(1):77-81. PubMed ID: 1730296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio alginolyticus--redox states of the FAD prosthetic group and mechanism of Ag+ inhibition.
    Steuber J; Krebs W; Dimroth P
    Eur J Biochem; 1997 Nov; 249(3):770-6. PubMed ID: 9395325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitor studies of a new antibiotic, korormicin, 2-n-heptyl-4-hydroxyquinoline N-oxide and Ag+ toward the Na+-translocating NADH-quinone reductase from the marine Vibrio alginolyticus.
    Nakayama Y; Hayashi M; Yoshikawa K; Mochida K; Unemoto T
    Biol Pharm Bull; 1999 Oct; 22(10):1064-7. PubMed ID: 10549856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Detection of a sodium pump in the terminal segment of the bacterial respiratory chain].
    Verkhovskaia ML; Semeĭkina AL; Skulachev VP; Bulygina ES; Chumakov KM
    Biokhimiia; 1989 Sep; 54(9):1457-66. PubMed ID: 2590685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A primary respiratory Na+ pump of an anaerobic bacterium: the Na+-dependent NADH:quinone oxidoreductase of Klebsiella pneumoniae.
    Dimroth P; Thomer A
    Arch Microbiol; 1989; 151(5):439-44. PubMed ID: 2545175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sodium cycle: a novel type of bacterial energetics.
    Skulachev VP
    J Bioenerg Biomembr; 1989 Dec; 21(6):635-47. PubMed ID: 2687258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium as Coupling Cation in Respiratory Energy Conversion.
    Fritz G; Steuber J
    Met Ions Life Sci; 2016; 16():349-90. PubMed ID: 26860307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sodium cycle. I. Na+-dependent motility and modes of membrane energization in the marine alkalotolerant vibrio Alginolyticus.
    Dibrov PA; Kostryko VA; Lazarova RL; Skulachev VP; Smirnova IA
    Biochim Biophys Acta; 1986 Jul; 850(3):449-57. PubMed ID: 2425848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central role of the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) in sodium bioenergetics of Vibrio cholerae.
    Steuber J; Halang P; Vorburger T; Steffen W; Vohl G; Fritz G
    Biol Chem; 2014 Dec; 395(12):1389-99. PubMed ID: 25205724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+ translocation by complex I (NADH:quinone oxidoreductase) of Escherichia coli.
    Steuber J; Schmid C; Rufibach M; Dimroth P
    Mol Microbiol; 2000 Jan; 35(2):428-34. PubMed ID: 10652103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cys377 residue in NqrF subunit confers Ag(+) sensitivity of Na+-translocating NADH:quinone oxidoreductase from Vibrio harveyi.
    Fadeeva MS; Bertsova YV; Euro L; Bogachev AV
    Biochemistry (Mosc); 2011 Feb; 76(2):186-95. PubMed ID: 21568851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic properties of Na+-translocating NADH:quinone oxidoreductases from Vibrio harveyi, Klebsiella pneumoniae, and Azotobacter vinelandii.
    Fadeeva MS; Núñez C; Bertsova YV; Espín G; Bogachev AV
    FEMS Microbiol Lett; 2008 Feb; 279(1):116-23. PubMed ID: 18300384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of the electrochemical potential of Na+ by the Na+-motive NADH oxidase in inverted membrane vesicles of Vibrio alginolyticus.
    Tokuda H; Udagawa T; Unemoto T
    FEBS Lett; 1985 Apr; 183(1):95-8. PubMed ID: 2579856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress in the Na(+)-translocating NADH-quinone reductase from the marine Vibrio alginolyticus.
    Hayashi M; Nakayama Y; Unemoto T
    Biochim Biophys Acta; 2001 May; 1505(1):37-44. PubMed ID: 11248187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cytochrome that can pump sodium ion.
    Efiok BJ; Webster DA
    Biochem Biophys Res Commun; 1990 Nov; 173(1):370-5. PubMed ID: 2256929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.