These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23874187)

  • 1. Statistical analysis of molecular signal recording.
    Glaser JI; Zamft BM; Marblestone AH; Moffitt JR; Tyo K; Boyden ES; Church G; Kording KP
    PLoS Comput Biol; 2013; 9(7):e1003145. PubMed ID: 23874187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide-time alignment for molecular recorders.
    Cybulski TR; Boyden ES; Church GM; Tyo KEJ; Kording KP
    PLoS Comput Biol; 2017 May; 13(5):e1005483. PubMed ID: 28459860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring cation dependent DNA polymerase fidelity landscapes by deep sequencing.
    Zamft BM; Marblestone AH; Kording K; Schmidt D; Martin-Alarcon D; Tyo K; Boyden ES; Church G
    PLoS One; 2012; 7(8):e43876. PubMed ID: 22928047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic assays of DNA polymerase fidelity: A theoretical perspective beyond Michaelis-Menten kinetics.
    Li QS; Shu YG; Ou-Yang ZC; Li M
    Phys Rev E; 2021 Jul; 104(1-1):014408. PubMed ID: 34412358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homology modeling of four Y-family, lesion-bypass DNA polymerases: the case that E. coli Pol IV and human Pol kappa are orthologs, and E. coli Pol V and human Pol eta are orthologs.
    Lee CH; Chandani S; Loechler EL
    J Mol Graph Model; 2006 Sep; 25(1):87-102. PubMed ID: 16386932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid architecture that influences dNTP insertion efficiency in Y-family DNA polymerase V of E. coli.
    Seo KY; Yin J; Donthamsetti P; Chandani S; Lee CH; Loechler EL
    J Mol Biol; 2009 Sep; 392(2):270-82. PubMed ID: 19607844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic mechanisms governing stable ribonucleotide incorporation in individual DNA polymerase complexes.
    Dahl JM; Wang H; Lázaro JM; Salas M; Lieberman KR
    Biochemistry; 2014 Dec; 53(51):8061-76. PubMed ID: 25478721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Ca
    Biggs BW; de Paz AM; Bhan NJ; Cybulski TR; Church GM; Tyo KEJ
    ACS Synth Biol; 2023 Nov; 12(11):3301-3311. PubMed ID: 37856140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proofreading of DNA polymerase: a new kinetic model with higher-order terminal effects.
    Song YS; Shu YG; Zhou X; Ou-Yang ZC; Li M
    J Phys Condens Matter; 2017 Jan; 29(2):025101. PubMed ID: 27842005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mirror image stereoisomers of the major benzo[a]pyrene N2-dG adduct are bypassed by different lesion-bypass DNA polymerases in E. coli.
    Seo KY; Nagalingam A; Miri S; Yin J; Chandani S; Kolbanovskiy A; Shastry A; Loechler EL
    DNA Repair (Amst); 2006 Apr; 5(4):515-22. PubMed ID: 16483853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method to accurately quantitate intensities of (32)P-DNA bands when multiple bands appear in a single lane of a gel is used to study dNTP insertion opposite a benzo[a]pyrene-dG adduct by Sulfolobus DNA polymerases Dpo4 and Dbh.
    Sholder G; Loechler EL
    DNA Repair (Amst); 2015 Jan; 25():97-103. PubMed ID: 25497330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Y-Family DNA polymerases may use two different dNTP shapes for insertion: a hypothesis and its implications.
    Chandani S; Loechler EL
    J Mol Graph Model; 2009 Apr; 27(7):759-69. PubMed ID: 19188081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant organellar DNA polymerases are replicative and translesion DNA synthesis polymerases.
    Baruch-Torres N; Brieba LG
    Nucleic Acids Res; 2017 Oct; 45(18):10751-10763. PubMed ID: 28977655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic mechanism of translocation and dNTP binding in individual DNA polymerase complexes.
    Lieberman KR; Dahl JM; Mai AH; Cox A; Akeson M; Wang H
    J Am Chem Soc; 2013 Jun; 135(24):9149-55. PubMed ID: 23705688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymerase-Based Signal Delay for Temporally Regulating DNA Involved Reactions, Programming Dynamic Molecular Systems, and Biomimetic Sensing.
    Rong Q; Deng Y; Chen F; Yin Z; Hu L; Su X; Zhou D
    Small; 2024 Aug; 20(35):e2400142. PubMed ID: 38676334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-passage problems in DNA replication: effects of template tension on stepping and exonuclease activities of a DNA polymerase motor.
    Sharma AK; Chowdhury D
    J Phys Condens Matter; 2013 Sep; 25(37):374105. PubMed ID: 23945294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-steady-state Kinetic Analysis of a Family D DNA Polymerase from Thermococcus sp. 9°N Reveals Mechanisms for Archaeal Genomic Replication and Maintenance.
    Schermerhorn KM; Gardner AF
    J Biol Chem; 2015 Sep; 290(36):21800-10. PubMed ID: 26160179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gleaning Euglenozoa-specific DNA polymerases in public single-cell transcriptome data.
    Harada R; Inagaki Y
    Protist; 2023 Dec; 174(6):125997. PubMed ID: 38039844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic analysis of the unique error signature of human DNA polymerase ν.
    Arana ME; Potapova O; Kunkel TA; Joyce CM
    Biochemistry; 2011 Nov; 50(46):10126-35. PubMed ID: 22008035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Error induction and correction by mutant and wild type T4 DNA polymerases. Kinetic error discrimination mechanisms.
    Clayton LK; Goodman MF; Branscomb EW; Galas DJ
    J Biol Chem; 1979 Mar; 254(6):1902-12. PubMed ID: 422561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.