These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23874524)

  • 21. Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments.
    Jackson CA; Castro DM; Saldi GA; Bonneau R; Gresham D
    Elife; 2020 Jan; 9():. PubMed ID: 31985403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep generative modeling for single-cell transcriptomics.
    Lopez R; Regier J; Cole MB; Jordan MI; Yosef N
    Nat Methods; 2018 Dec; 15(12):1053-1058. PubMed ID: 30504886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A hidden Markov approach for ascertaining cSNP genotypes from RNA sequence data in the presence of allelic imbalance by exploiting linkage disequilibrium.
    Steibel JP; Wang H; Zhong PS
    BMC Bioinformatics; 2015 Feb; 16():61. PubMed ID: 25887316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inferring transcriptomic cell states and transitions only from time series transcriptome data.
    Jo K; Sung I; Lee D; Jang H; Kim S
    Sci Rep; 2021 Jun; 11(1):12566. PubMed ID: 34131182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of Partial Least Squares improves the efficacy of removing unwanted variability in differential expression analyses based on RNA-Seq data.
    Chakraborty S
    Genomics; 2019 Jul; 111(4):893-898. PubMed ID: 29842947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Broad distribution spectrum from Gaussian to power law appears in stochastic variations in RNA-seq data.
    Awazu A; Tanabe T; Kamitani M; Tezuka A; Nagano AJ
    Sci Rep; 2018 May; 8(1):8339. PubMed ID: 29844539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-Cell Transcriptomic Analysis.
    Zheng Z; Chen E; Lu W; Mouradian G; Hodges M; Liang M; Liu P; Lu Y
    Compr Physiol; 2020 Mar; 10(2):767-783. PubMed ID: 32163201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rare Cell Detection by Single-Cell RNA Sequencing as Guided by Single-Molecule RNA FISH.
    Torre E; Dueck H; Shaffer S; Gospocic J; Gupte R; Bonasio R; Kim J; Murray J; Raj A
    Cell Syst; 2018 Feb; 6(2):171-179.e5. PubMed ID: 29454938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ryūtō: network-flow based transcriptome reconstruction.
    Gatter T; Stadler PF
    BMC Bioinformatics; 2019 Apr; 20(1):190. PubMed ID: 30991937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. deGPS is a powerful tool for detecting differential expression in RNA-sequencing studies.
    Chu C; Fang Z; Hua X; Yang Y; Chen E; Cowley AW; Liang M; Liu P; Lu Y
    BMC Genomics; 2015 Jun; 16(1):455. PubMed ID: 26070955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectacle: An interactive resource for ocular single-cell RNA sequencing data analysis.
    Voigt AP; Whitmore SS; Lessing ND; DeLuca AP; Tucker BA; Stone EM; Mullins RF; Scheetz TE
    Exp Eye Res; 2020 Nov; 200():108204. PubMed ID: 32910939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving reliability and absolute quantification of human brain microarray data by filtering and scaling probes using RNA-Seq.
    Miller JA; Menon V; Goldy J; Kaykas A; Lee CK; Smith KA; Shen EH; Phillips JW; Lein ES; Hawrylycz MJ
    BMC Genomics; 2014 Feb; 15(1):154. PubMed ID: 24564186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Guide for Designing and Analyzing RNA-Seq Data.
    Chatterjee A; Ahn A; Rodger EJ; Stockwell PA; Eccles MR
    Methods Mol Biol; 2018; 1783():35-80. PubMed ID: 29767357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adjustment of spurious correlations in co-expression measurements from RNA-Sequencing data.
    Hsieh PH; Lopes-Ramos CM; Zucknick M; Sandve GK; Glass K; Kuijjer ML
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37802917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid error correction and de novo assembly of single-molecule sequencing reads.
    Koren S; Schatz MC; Walenz BP; Martin J; Howard JT; Ganapathy G; Wang Z; Rasko DA; McCombie WR; Jarvis ED; Adam M Phillippy
    Nat Biotechnol; 2012 Jul; 30(7):693-700. PubMed ID: 22750884
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reference-Based Identification of Long Noncoding RNAs in Plants with Strand-Specific RNA-Sequencing Data.
    Lin X; Ni M; Xiao Z; Chan TF; Lam HM
    Methods Mol Biol; 2019; 1933():245-255. PubMed ID: 30945189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PROBer Provides a General Toolkit for Analyzing Sequencing-Based Toeprinting Assays.
    Li B; Tambe A; Aviran S; Pachter L
    Cell Syst; 2017 May; 4(5):568-574.e7. PubMed ID: 28501650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor.
    Anders S; McCarthy DJ; Chen Y; Okoniewski M; Smyth GK; Huber W; Robinson MD
    Nat Protoc; 2013 Sep; 8(9):1765-86. PubMed ID: 23975260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation of high-quality total RNA and RNA sequencing of single bovine oocytes.
    Biase FH
    STAR Protoc; 2021 Dec; 2(4):100895. PubMed ID: 34723212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of novel long non-coding RNAs based on RNA-Seq data of mouse Klf1 knockout study.
    Sun L; Zhang Z; Bailey TL; Perkins AC; Tallack MR; Xu Z; Liu H
    BMC Bioinformatics; 2012 Dec; 13():331. PubMed ID: 23237380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.