These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23874721)

  • 1. Amyloid-like fibril elongation follows michaelis-menten kinetics.
    Milto K; Botyriute A; Smirnovas V
    PLoS One; 2013; 8(7):e68684. PubMed ID: 23874721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonication-dependent acceleration of amyloid fibril formation.
    So M; Yagi H; Sakurai K; Ogi H; Naiki H; Goto Y
    J Mol Biol; 2011 Sep; 412(4):568-77. PubMed ID: 21839746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic and environmental control of the prevalence and lifetime of amyloid oligomers.
    Morris RJ; Eden K; Yarwood R; Jourdain L; Allen RJ; Macphee CE
    Nat Commun; 2013; 4():1891. PubMed ID: 23695685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-inhibition of insulin amyloid-like aggregation.
    Ziaunys M; Sneideris T; Smirnovas V
    Phys Chem Chem Phys; 2018 Nov; 20(43):27638-27645. PubMed ID: 30374505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apolipoprotein C-II amyloid fibrils assemble via a reversible pathway that includes fibril breaking and rejoining.
    Binger KJ; Pham CL; Wilson LM; Bailey MF; Lawrence LJ; Schuck P; Howlett GJ
    J Mol Biol; 2008 Feb; 376(4):1116-29. PubMed ID: 18206908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining the pathway of worm-like amyloid fibril formation by the mouse prion protein by delineation of the productive and unproductive oligomerization reactions.
    Jain S; Udgaonkar JB
    Biochemistry; 2011 Feb; 50(7):1153-61. PubMed ID: 21214263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial extent of charge repulsion regulates assembly pathways for lysozyme amyloid fibrils.
    Hill SE; Miti T; Richmond T; Muschol M
    PLoS One; 2011 Apr; 6(4):e18171. PubMed ID: 21483680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational stability of fibrillar amyloid-beta oligomers via protofilament pair formation - a systematic computational study.
    Kahler A; Sticht H; Horn AH
    PLoS One; 2013; 8(7):e70521. PubMed ID: 23936224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependent insulin oligomer reaction pathway prior to fibril formation: cooling and seeding.
    Sorci M; Grassucci RA; Hahn I; Frank J; Belfort G
    Proteins; 2009 Oct; 77(1):62-73. PubMed ID: 19408310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of stable α-synuclein oligomers in the molecular events underlying amyloid formation.
    Lorenzen N; Nielsen SB; Buell AK; Kaspersen JD; Arosio P; Vad BS; Paslawski W; Christiansen G; Valnickova-Hansen Z; Andreasen M; Enghild JJ; Pedersen JS; Dobson CM; Knowles TP; Otzen DE
    J Am Chem Soc; 2014 Mar; 136(10):3859-68. PubMed ID: 24527756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt-induced modulation of the pathway of amyloid fibril formation by the mouse prion protein.
    Jain S; Udgaonkar JB
    Biochemistry; 2010 Sep; 49(35):7615-24. PubMed ID: 20712298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amyloid gels: precocious appearance of elastic properties during the formation of an insulin fibrillar network.
    Manno M; Giacomazza D; Newman J; Martorana V; San Biagio PL
    Langmuir; 2010 Feb; 26(3):1424-6. PubMed ID: 19916492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of amyloid-β fibril elongation.
    Gurry T; Stultz CM
    Biochemistry; 2014 Nov; 53(44):6981-91. PubMed ID: 25330398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amyloid-like fibril formation by polyQ proteins: a critical balance between the polyQ length and the constraints imposed by the host protein.
    Scarafone N; Pain C; Fratamico A; Gaspard G; Yilmaz N; Filée P; Galleni M; Matagne A; Dumoulin M
    PLoS One; 2012; 7(3):e31253. PubMed ID: 22438863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elongation of mouse prion protein amyloid-like fibrils: effect of temperature and denaturant concentration.
    Milto K; Michailova K; Smirnovas V
    PLoS One; 2014; 9(4):e94469. PubMed ID: 24747600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elongation dynamics of amyloid fibrils: a rugged energy landscape picture.
    Lee CF; Loken J; Jean L; Vaux DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041906. PubMed ID: 19905341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible heat-induced dissociation of β2-microglobulin amyloid fibrils.
    Kardos J; Micsonai A; Pál-Gábor H; Petrik É; Gráf L; Kovács J; Lee YH; Naiki H; Goto Y
    Biochemistry; 2011 Apr; 50(15):3211-20. PubMed ID: 21388222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gallic acid, one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fibril formation.
    Jayamani J; Shanmugam G
    Eur J Med Chem; 2014 Oct; 85():352-8. PubMed ID: 25105923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric amyloid fibril elongation: a new perspective on a symmetric world.
    Heldt CL; Zhang S; Belfort G
    Proteins; 2011 Jan; 79(1):92-8. PubMed ID: 20941707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of fibril formation of bovine kappa-casein indicate a conformational rearrangement as a critical step in the process.
    Leonil J; Henry G; Jouanneau D; Delage MM; Forge V; Putaux JL
    J Mol Biol; 2008 Sep; 381(5):1267-80. PubMed ID: 18616951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.