These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23875299)

  • 21. Architects of nature: growing buildings with bacterial biofilms.
    Dade-Robertson M; Keren-Paz A; Zhang M; Kolodkin-Gal I
    Microb Biotechnol; 2017 Sep; 10(5):1157-1163. PubMed ID: 28815998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Life in the extreme: thermoacidophilic methanotrophy.
    Semrau JD; Dispirito AA; Murrell JC
    Trends Microbiol; 2008 May; 16(5):190-3. PubMed ID: 18420412
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Formation of molecular hydrogen by the action of stratal microflora on oil].
    Nazina TN
    Mikrobiologiia; 1981; 50(1):163-6. PubMed ID: 7219213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effect of substances extracted from coal on the oxidative and growth activity of methane-oxidizing bacteria].
    Kudrish IK; Miagkiĭ BI; Khenkina LM; Evseeva AE; Kryshtab TP
    Mikrobiol Zh; 1977; 39(5):591-6. PubMed ID: 916912
    [No Abstract]   [Full Text] [Related]  

  • 25. Effects of elevated atmospheric CO2 concentrations on soil microorganisms.
    Freeman C; Kim SY; Lee SH; Kang H
    J Microbiol; 2004 Dec; 42(4):267-77. PubMed ID: 15650682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The problematic rise of Archean oxygen.
    Towe KM
    Science; 2002 Feb; 295(5559):1419. PubMed ID: 11859156
    [No Abstract]   [Full Text] [Related]  

  • 27. Estimation of microbial methane generation and oxidation rates in the municipal solid waste landfill of Kaluga city, Russia.
    Zyakun AM; Muravyev AI; Baskunov BP; Laurinavichius KS; Zakharchenko VN; Peshenko VP; Lykov IN; Shestakova GA
    Isotopes Environ Health Stud; 2010 Mar; 46(1):78-90. PubMed ID: 20229386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2.
    Thauer RK
    Curr Opin Microbiol; 2011 Jun; 14(3):292-9. PubMed ID: 21489863
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Transformation of substrates not used for growth by the immobilized methane-oxidizing bacteria].
    Sokolov IG; Malashenko IuR; Karpenko VI; Kryshtab
    Ukr Biokhim Zh (1978); 1979; 51(4):393-9. PubMed ID: 473389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A microbial consortium couples anaerobic methane oxidation to denitrification.
    Raghoebarsing AA; Pol A; van de Pas-Schoonen KT; Smolders AJ; Ettwig KF; Rijpstra WI; Schouten S; Damsté JS; Op den Camp HJ; Jetten MS; Strous M
    Nature; 2006 Apr; 440(7086):918-21. PubMed ID: 16612380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study of thin biocovers (TBC) for oxidizing uncaptured methane emissions in bioreactor landfills.
    Perdikea K; Mehrotra AK; Hettiaratchi JP
    Waste Manag; 2008; 28(8):1364-74. PubMed ID: 17851063
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of respiration in compost landfill biocovers intended for methane oxidation.
    Scheutz C; Pedicone A; Pedersen GB; Kjeldsen P
    Waste Manag; 2011 May; 31(5):895-902. PubMed ID: 21292472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Trophic links in cultures oxidizing methane].
    Namsaraev BB; Zavarzin GA
    Mikrobiologiia; 1972; 41(6):999-1006. PubMed ID: 4266629
    [No Abstract]   [Full Text] [Related]  

  • 34. Bioelectrochemical reduction of CO(2) to CH(4) via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture.
    Villano M; Aulenta F; Ciucci C; Ferri T; Giuliano A; Majone M
    Bioresour Technol; 2010 May; 101(9):3085-90. PubMed ID: 20074943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete.
    Seifan M; Berenjian A
    World J Microbiol Biotechnol; 2018 Nov; 34(11):168. PubMed ID: 30387067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Microbiological processes in the Lost City vent field, mid-Atlantic ridge].
    Dulov LE; Lein AIu; Dubinina GA; Pimenov NV
    Mikrobiologiia; 2005; 74(1):111-8. PubMed ID: 15835787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards a low CO2 emission building material employing bacterial metabolism (2/2): Prospects for global warming potential reduction in the concrete industry.
    Myhr A; Røyne F; Brandtsegg AS; Bjerkseter C; Throne-Holst H; Borch A; Wentzel A; Røyne A
    PLoS One; 2019; 14(4):e0208643. PubMed ID: 30990800
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogen-oxidizing methane bacteria. I. Cultivation and methanogenesis.
    Bryant MP; McBride BC; Wolfe RS
    J Bacteriol; 1968 Mar; 95(3):1118-23. PubMed ID: 5651323
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response of methanotrophic activity and community structure to temperature changes in a diffusive CH/O counter gradient in an unsaturated porous medium.
    Urmann K; Lazzaro A; Gandolfi I; Schroth MH; Zeyer J
    FEMS Microbiol Ecol; 2009 Aug; 69(2):202-12. PubMed ID: 19496819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methane fermentation of sewage sludge. IV. Cyclic phenomena of methane fermentation at maximum concentration of acetic and butyric acids possible.
    Buraczewski G
    Acta Microbiol Pol B; 1970; 2(1):57-64. PubMed ID: 5427223
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.