These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23875299)

  • 41. Methanotrophic bacteria in boreal forest soil after fire.
    Jaatinen K; Knief C; Dunfield PF; Yrjålå K; Fritze H
    FEMS Microbiol Ecol; 2004 Nov; 50(3):195-202. PubMed ID: 19712360
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On methane-oxidizing bacteria in fresh waters. II. A method for the estimation and statistical evaluation of the metabolic turnover of gases by methane-oxidizing bacteria.
    Naguib M
    Z Allg Mikrobiol; 1970; 10(8):627-36. PubMed ID: 4925889
    [No Abstract]   [Full Text] [Related]  

  • 43. Inhibition of methanogenesis by DDT.
    McBride BC; Wolfe RS
    Nature; 1971 Dec; 234(5331):551-2. PubMed ID: 4946110
    [No Abstract]   [Full Text] [Related]  

  • 44. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs.
    Raghoebarsing AA; Smolders AJ; Schmid MC; Rijpstra WI; Wolters-Arts M; Derksen J; Jetten MS; Schouten S; Sinninghe Damsté JS; Lamers LP; Roelofs JG; Op den Camp HJ; Strous M
    Nature; 2005 Aug; 436(7054):1153-6. PubMed ID: 16121180
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Autotrophic assimilation of carbon dioxide by bacteria oxidizing carbon monoxide].
    Nozhevnikova AN; Savel'eva ND
    Mikrobiologiia; 1972; 41(6):939-46. PubMed ID: 4657967
    [No Abstract]   [Full Text] [Related]  

  • 46. Impact of sulphate-reducing bacteria on the performance of engineering materials.
    Javaherdashti R
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1507-17. PubMed ID: 21786108
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth.
    Catling DC; Zahnle KJ; McKay C
    Science; 2001 Aug; 293(5531):839-43. PubMed ID: 11486082
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 'That which does not kill us only makes us stronger': the role of carbon monoxide in thermophilic microbial consortia.
    Techtmann SM; Colman AS; Robb FT
    Environ Microbiol; 2009 May; 11(5):1027-37. PubMed ID: 19239487
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Calcite-forming bacteria for compressive strength improvement in mortar.
    Park SJ; Park YM; Chun WY; Kim WJ; Ghim SY
    J Microbiol Biotechnol; 2010 Apr; 20(4):782-8. PubMed ID: 20467254
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [The effect of the composition of a gas mixture on the growth of bacteria assimilating gaseous hydrocarbons].
    Smirnova ZS
    Izv Akad Nauk SSSR Biol; 1970; 1():30-7. PubMed ID: 5490991
    [No Abstract]   [Full Text] [Related]  

  • 51. A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico.
    Kessler JD; Valentine DL; Redmond MC; Du M; Chan EW; Mendes SD; Quiroz EW; Villanueva CJ; Shusta SS; Werra LM; Yvon-Lewis SA; Weber TC
    Science; 2011 Jan; 331(6015):312-5. PubMed ID: 21212320
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monitoring sulfide-oxidizing biofilm activity on cement surfaces using non-invasive self-referencing microsensors.
    Cheng L; House MW; Weiss WJ; Banks MK
    Water Res; 2016 Feb; 89():321-9. PubMed ID: 26707733
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gas-tight flask for the concurrent measurement of gas metabolism and growth in methane-oxidizing bacteria.
    Munoz EF; Silverman MP
    Appl Microbiol; 1974 Sep; 28(3):507-9. PubMed ID: 4609210
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Methane and carbon dioxide emissions from Shan-Chu-Ku landfill site in northern Taiwan.
    Hegde U; Chang TC; Yang SS
    Chemosphere; 2003 Sep; 52(8):1275-85. PubMed ID: 12852979
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reverse methanogenesis: testing the hypothesis with environmental genomics.
    Hallam SJ; Putnam N; Preston CM; Detter JC; Rokhsar D; Richardson PM; DeLong EF
    Science; 2004 Sep; 305(5689):1457-62. PubMed ID: 15353801
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functionalization of methane in anaerobic microorganisms.
    Thauer RK
    Angew Chem Int Ed Engl; 2010 Sep; 49(38):6712-3. PubMed ID: 20672272
    [No Abstract]   [Full Text] [Related]  

  • 57. Structure of an F430 variant from archaea associated with anaerobic oxidation of methane.
    Mayr S; Latkoczy C; Krüger M; Günther D; Shima S; Thauer RK; Widdel F; Jaun B
    J Am Chem Soc; 2008 Aug; 130(32):10758-67. PubMed ID: 18642902
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Development of methane-oxidizing bacteria in glass capillary tubes].
    Nazarenko AV; Nesterov AI; Pitriuk AP; Nazarenko VM
    Mikrobiologiia; 1974; 43(1):146-51. PubMed ID: 4601404
    [No Abstract]   [Full Text] [Related]  

  • 59. On methane oxidizing bacteria in fresh waters. I. Introduction to the problem and investigations on the presence of obligate methane oxidizers.
    Naguib M; Overbeck J
    Z Allg Mikrobiol; 1970; 10(1):17-36. PubMed ID: 4318243
    [No Abstract]   [Full Text] [Related]  

  • 60. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea.
    Wilms R; Sass H; Köpke B; Cypionka H; Engelen B
    FEMS Microbiol Ecol; 2007 Mar; 59(3):611-21. PubMed ID: 17059478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.