These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 23875576)

  • 1. Fractal dynamics in dexterous tool use: the case of hammering behavior of bead craftsmen.
    Nonaka T; Bril B
    J Exp Psychol Hum Percept Perform; 2014 Feb; 40(1):218-31. PubMed ID: 23875576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nesting of asymmetric functions in skilled bimanual action: dynamics of hammering behavior of bead craftsmen.
    Nonaka T; Bril B
    Hum Mov Sci; 2012 Feb; 31(1):55-77. PubMed ID: 21531470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Movement kinematics as an index of the level of motor skill: the case of Indian craftsmen stone knapping.
    Biryukova EV; Bril B; Frolov AA; Koulikov MA
    Motor Control; 2015 Jan; 19(1):34-59. PubMed ID: 25028971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of fractality in perceptual learning: exploration in dynamic touch.
    Stephen DG; Arzamarski R; Michaels CF
    J Exp Psychol Hum Percept Perform; 2010 Oct; 36(5):1161-73. PubMed ID: 20718566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustness to temporal constraint explains expertise in ball-over-net sports.
    Suzuki H; Yamamoto Y
    Hum Mov Sci; 2015 Jun; 41():193-206. PubMed ID: 25828581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer of calibration between hand and foot: functional equivalence and fractal fluctuations.
    Stephen DG; Hajnal A
    Atten Percept Psychophys; 2011 Jul; 73(5):1302-28. PubMed ID: 21598066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractal fluctuations in quiet standing predict the use of mechanical information for haptic perception.
    Palatinus Z; Dixon JA; Kelty-Stephen DG
    Ann Biomed Eng; 2013 Aug; 41(8):1625-34. PubMed ID: 23188561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal properties and short-term correlations in motor control in cycling: influence of a cognitive challenge.
    Gilfriche P; Arsac LM; Blons E; Deschodt-Arsac V
    Hum Mov Sci; 2019 Oct; 67():102518. PubMed ID: 31542675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using fractals and nonlinear dynamics to determine the physical properties of ion channel proteins.
    Liebovitch LS; Todorov AT
    Crit Rev Neurobiol; 1996; 10(2):169-87. PubMed ID: 8971128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractal fluctuations in human respiration.
    Fadel PJ; Barman SM; Phillips SW; Gebber GL
    J Appl Physiol (1985); 2004 Dec; 97(6):2056-64. PubMed ID: 15286051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractal dynamics in physiology: alterations with disease and aging.
    Goldberger AL; Amaral LA; Hausdorff JM; Ivanov PCh; Peng CK; Stanley HE
    Proc Natl Acad Sci U S A; 2002 Feb; 99 Suppl 1(Suppl 1):2466-72. PubMed ID: 11875196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-range temporal correlations in alpha and beta oscillations: effect of arousal level and test-retest reliability.
    Nikulin VV; Brismar T
    Clin Neurophysiol; 2004 Aug; 115(8):1896-908. PubMed ID: 15261868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sport expert's motor imagery: functional imaging of professional motor skills and simple motor skills.
    Wei G; Luo J
    Brain Res; 2010 Jun; 1341():52-62. PubMed ID: 19686705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractal and noisy CBV dynamics in humans: influence of age and gender.
    Eke A; Hermán P; Hajnal M
    J Cereb Blood Flow Metab; 2006 Jul; 26(7):891-8. PubMed ID: 16292253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractal temporal organisation of motricity is altered in major depression.
    Aybek S; Ionescu A; Berney A; Chocron O; Aminian K; Vingerhoets FJ
    Psychiatry Res; 2012 Dec; 200(2-3):288-93. PubMed ID: 22542087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representation of motor skills in human long-term memory.
    Schack T; Mechsner F
    Neurosci Lett; 2006 Jan; 391(3):77-81. PubMed ID: 16266782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of motor skill and instrumental learning time scales in a skilled reaching task in rat.
    Buitrago MM; Ringer T; Schulz JB; Dichgans J; Luft AR
    Behav Brain Res; 2004 Dec; 155(2):249-56. PubMed ID: 15364484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying multiplicative interactions between temporal scales of human movement variability.
    Ihlen EA; Vereijken B
    Ann Biomed Eng; 2013 Aug; 41(8):1635-45. PubMed ID: 23247986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting fractal power-law long-range dependence in pre-sliced cooked pork ham surface intensity patterns using Detrended Fluctuation Analysis.
    Valous NA; Drakakis K; Sun DW
    Meat Sci; 2010 Oct; 86(2):289-97. PubMed ID: 20510535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perceptual and physiological responses to the visual complexity of fractal patterns.
    Taylor RP; Spehar B; Wise JA; Clifford CW; Newell BR; Hagerhall CM; Purcell T; Martin TP
    Nonlinear Dynamics Psychol Life Sci; 2005 Jan; 9(1):89-114. PubMed ID: 15629069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.