These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23875961)

  • 1. Assessment and improvement of statistical tools for comparative proteomics analysis of sparse data sets with few experimental replicates.
    Schwämmle V; León IR; Jensen ON
    J Proteome Res; 2013 Sep; 12(9):3874-83. PubMed ID: 23875961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo quantitative proteome profiling: planning and evaluation of SILAC experiments.
    Kirchner M; Selbach M
    Methods Mol Biol; 2012; 893():175-99. PubMed ID: 22665302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations.
    Elias JE; Haas W; Faherty BK; Gygi SP
    Nat Methods; 2005 Sep; 2(9):667-75. PubMed ID: 16118637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mixture model approach to the tests of concordance and discordance between two large-scale experiments with two-sample groups.
    Lai Y; Adam BL; Podolsky R; She JX
    Bioinformatics; 2007 May; 23(10):1243-50. PubMed ID: 17384018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Software tools for MS-based quantitative proteomics: a brief overview.
    Lemeer S; Hahne H; Pachl F; Kuster B
    Methods Mol Biol; 2012; 893():489-99. PubMed ID: 22665318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two Chlamydomonas reinhardtii strains of interest for biofuels engineering.
    Wang H; Alvarez S; Hicks LM
    J Proteome Res; 2012 Jan; 11(1):487-501. PubMed ID: 22059437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MSQuant: a platform for stable isotope-based quantitative proteomics.
    Gouw JW; Krijgsveld J
    Methods Mol Biol; 2012; 893():511-22. PubMed ID: 22665320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tools and strategies for visualization of large image data sets in high-resolution imaging mass spectrometry.
    Klinkert I; McDonnell LA; Luxembourg SL; Altelaar AF; Amstalden ER; Piersma SR; Heeren RM
    Rev Sci Instrum; 2007 May; 78(5):053716. PubMed ID: 17552834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistics for proteomics: a review of tools for analyzing experimental data.
    Urfer W; Grzegorczyk M; Jung K
    Proteomics; 2006 Sep; 6 Suppl 2():48-55. PubMed ID: 17031797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General statistical framework for quantitative proteomics by stable isotope labeling.
    Navarro P; Trevisan-Herraz M; Bonzon-Kulichenko E; Núñez E; Martínez-Acedo P; Pérez-Hernández D; Jorge I; Mesa R; Calvo E; Carrascal M; Hernáez ML; García F; Bárcena JA; Ashman K; Abian J; Gil C; Redondo JM; Vázquez J
    J Proteome Res; 2014 Mar; 13(3):1234-47. PubMed ID: 24512137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normalization and statistical analysis of quantitative proteomics data generated by metabolic labeling.
    Ting L; Cowley MJ; Hoon SL; Guilhaus M; Raftery MJ; Cavicchioli R
    Mol Cell Proteomics; 2009 Oct; 8(10):2227-42. PubMed ID: 19605365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discussion on common data analysis strategies used in MS-based proteomics.
    Matthiesen R; Azevedo L; Amorim A; Carvalho AS
    Proteomics; 2011 Feb; 11(4):604-19. PubMed ID: 21241018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of differentially expressed peptides in high-throughput proteomics data.
    van Ooijen MP; Jong VL; Eijkemans MJC; Heck AJR; Andeweg AC; Binai NA; van den Ham HJ
    Brief Bioinform; 2018 Sep; 19(5):971-981. PubMed ID: 28369175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical performance of reciprocal isotope labeling of proteome digests for quantitative proteomics and its application for comparative studies of aerobic and anaerobic Escherichia coli proteomes.
    Lo A; Weiner JH; Li L
    Anal Chim Acta; 2013 Sep; 795():25-35. PubMed ID: 23998534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ProteoConnections: a bioinformatics platform to facilitate proteome and phosphoproteome analyses.
    Courcelles M; Lemieux S; Voisin L; Meloche S; Thibault P
    Proteomics; 2011 Jul; 11(13):2654-71. PubMed ID: 21630457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of statistical methods used for detecting differential expression in label-free mass spectrometry proteomics.
    Langley SR; Mayr M
    J Proteomics; 2015 Nov; 129():83-92. PubMed ID: 26193490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PolySTest: Robust Statistical Testing of Proteomics Data with Missing Values Improves Detection of Biologically Relevant Features.
    Schwämmle V; Hagensen CE; Rogowska-Wrzesinska A; Jensen ON
    Mol Cell Proteomics; 2020 Aug; 19(8):1396-1408. PubMed ID: 32424025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing signal-to-noise in quantitative proteomics: multivariate statistical analysis in DIGE experiments.
    Friedman DB
    Methods Mol Biol; 2012; 854():31-45. PubMed ID: 22311752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of reproducibility of guanidination-dimethylation labeling and liquid chromatography matrix-assisted laser desorption ionization mass spectrometry for relative proteome quantification.
    Ji C; Zhang N; Damaraju S; Damaraju VL; Carpenter P; Cass CE; Li L
    Anal Chim Acta; 2007 Mar; 585(2):219-26. PubMed ID: 17386668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current challenges in software solutions for mass spectrometry-based quantitative proteomics.
    Cappadona S; Baker PR; Cutillas PR; Heck AJ; van Breukelen B
    Amino Acids; 2012 Sep; 43(3):1087-108. PubMed ID: 22821268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.