These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23875969)

  • 21. Cognitive-motor dual-task interference modulates mediolateral dynamic stability during gait in post-stroke individuals.
    Tisserand R; Armand S; Allali G; Schnider A; Baillieul S
    Hum Mov Sci; 2018 Apr; 58():175-184. PubMed ID: 29448162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optic flow is used to control human walking.
    Warren WH; Kay BA; Zosh WD; Duchon AP; Sahuc S
    Nat Neurosci; 2001 Feb; 4(2):213-6. PubMed ID: 11175884
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of head immobilization on the coordination and control of head and body reorientation and translation during steering.
    Hollands MA; Sorensen KL; Patla AE
    Exp Brain Res; 2001 Sep; 140(2):223-33. PubMed ID: 11521154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic clearance measure to evaluate locomotor and perceptuo-motor strategies used for obstacle circumvention in a virtual environment.
    Darekar A; Lamontagne A; Fung J
    Hum Mov Sci; 2015 Apr; 40():359-71. PubMed ID: 25682376
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heading but not path or the tau-equalization strategy is used in the visual control of steering toward a goal.
    Li L; Cheng JC
    J Vis; 2011 Oct; 11(12):. PubMed ID: 22036919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Head motion in humans alternating between straight and curved walking path: combination of stabilizing and anticipatory orienting mechanisms.
    Hicheur H; Vieilledent S; Berthoz A
    Neurosci Lett; 2005 Jul 22-29; 383(1-2):87-92. PubMed ID: 15936517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The predictive brain: anticipatory control of head direction for the steering of locomotion.
    Grasso R; Glasauer S; Takei Y; Berthoz A
    Neuroreport; 1996 Apr; 7(6):1170-4. PubMed ID: 8817526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new paradigm to investigate the roles of head and eye movements in the coordination of whole-body movements.
    Hollands MA; Ziavra NV; Bronstein AM
    Exp Brain Res; 2004 Jan; 154(2):261-6. PubMed ID: 14639471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The direction of walking--but not throwing or kicking--is adapted by optic flow.
    Bruggeman H; Warren WH
    Psychol Sci; 2010 Jul; 21(7):1006-13. PubMed ID: 20511390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gaze coordination with strides during walking in the cat.
    Zubair HN; Chu KMI; Johnson JL; Rivers TJ; Beloozerova IN
    J Physiol; 2019 Nov; 597(21):5195-5229. PubMed ID: 31460673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Viewing medium affects arm motor performance in 3D virtual environments.
    Subramanian SK; Levin MF
    J Neuroeng Rehabil; 2011 Jun; 8():36. PubMed ID: 21718542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cognitive load and dual-task performance during locomotion poststroke: a feasibility study using a functional virtual environment.
    Kizony R; Levin MF; Hughey L; Perez C; Fung J
    Phys Ther; 2010 Feb; 90(2):252-60. PubMed ID: 20023003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.
    Kannape OA; Barré A; Aminian K; Blanke O
    PLoS One; 2014; 9(1):e85560. PubMed ID: 24465601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gait deviations induced by visual stimulation in roll.
    Schneider E; Jahn K; Dieterich M; Brandt T; Strupp M
    Exp Brain Res; 2008 Feb; 185(1):21-6. PubMed ID: 17909767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exposure to a rotating virtual environment during treadmill locomotion causes adaptation in heading direction.
    Mulavara AP; Richards JT; Ruttley T; Marshburn A; Nomura Y; Bloomberg JJ
    Exp Brain Res; 2005 Oct; 166(2):210-9. PubMed ID: 16034569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visually evoked whole-body turning responses during stepping in place in a virtual environment.
    Reed-Jones RJ; Hollands MA; Reed-Jones JG; Vallis LA
    Gait Posture; 2009 Oct; 30(3):317-21. PubMed ID: 19560360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of anticipatory orienting strategies and trajectory formation in goal-oriented locomotion.
    Belmonti V; Cioni G; Berthoz A
    Exp Brain Res; 2013 May; 227(1):131-47. PubMed ID: 23588420
    [TBL] [Abstract][Full Text] [Related]  

  • 38. "Look where you're going!": gaze behaviour associated with maintaining and changing the direction of locomotion.
    Hollands MA; Patla AE; Vickers JN
    Exp Brain Res; 2002 Mar; 143(2):221-30. PubMed ID: 11880898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stroke affects the coordination and stabilization of head, thorax and pelvis during voluntary horizontal head motions performed in walking.
    Lamontagne A; De Serres SJ; Fung J; Paquet N
    Clin Neurophysiol; 2005 Jan; 116(1):101-11. PubMed ID: 15589189
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of divided attention on visual control of steering toward a goal.
    Chen R; Li L
    J Exp Psychol Hum Percept Perform; 2022 Jun; 48(6):597-612. PubMed ID: 35446087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.