These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 23876013)

  • 1. Stretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores.
    Belkin M; Maffeo C; Wells DB; Aksimentiev A
    ACS Nano; 2013 Aug; 7(8):6816-24. PubMed ID: 23876013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA translocations through solid-state plasmonic nanopores.
    Nicoli F; Verschueren D; Klein M; Dekker C; Jonsson MP
    Nano Lett; 2014 Dec; 14(12):6917-25. PubMed ID: 25347403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling thermophoretic effects in solid-state nanopores.
    Belkin M; Chao SH; Giannetti G; Aksimentiev A
    J Comput Electron; 2014 Dec; 13(4):826-838. PubMed ID: 25395899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-grained molecular dynamics simulation of DNA translocation in chemically modified nanopores.
    Ramachandran A; Guo Q; Iqbal SM; Liu Y
    J Phys Chem B; 2011 May; 115(19):6138-48. PubMed ID: 21526788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanopore Translocation Reveals Electrophoretic Force on Noncanonical RNA:DNA Double Helix.
    Bošković F; Maffeo C; Patiño-Guillén G; Tivony R; Aksimentiev A; Keyser UF
    ACS Nano; 2024 Jun; 18(23):15013-15024. PubMed ID: 38822455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores.
    Belkin M; Aksimentiev A
    ACS Appl Mater Interfaces; 2016 May; 8(20):12599-608. PubMed ID: 26963065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrimination of three types of homopolymers in single-stranded DNA with solid-state nanopores through external control of the DNA motion.
    Akahori R; Yanagi I; Goto Y; Harada K; Yokoi T; Takeda KI
    Sci Rep; 2017 Aug; 7(1):9073. PubMed ID: 28831056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-stranded DNA within nanopores: conformational dynamics and implications for sequencing; a molecular dynamics simulation study.
    Guy AT; Piggot TJ; Khalid S
    Biophys J; 2012 Sep; 103(5):1028-36. PubMed ID: 23009852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Base-by-base ratcheting of single stranded DNA through a solid-state nanopore.
    Luan B; Peng H; Polonsky S; Rossnagel S; Stolovitzky G; Martyna G
    Phys Rev Lett; 2010 Jun; 104(23):238103. PubMed ID: 20867275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of structured single-strand DNA via solid-state nanopore.
    Liu SC; Li Q; Ying YL; Long YT
    Electrophoresis; 2019 Aug; 40(16-17):2112-2116. PubMed ID: 30912583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter.
    Akahori R; Haga T; Hatano T; Yanagi I; Ohura T; Hamamura H; Iwasaki T; Yokoi T; Anazawa T
    Nanotechnology; 2014 Jul; 25(27):275501. PubMed ID: 24960034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slowing the translocation of double-stranded DNA using a nanopore smaller than the double helix.
    Mirsaidov U; Comer J; Dimitrov V; Aksimentiev A; Timp G
    Nanotechnology; 2010 Oct; 21(39):395501. PubMed ID: 20808032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification of solid-state nanopores for sticky-free translocation of single-stranded DNA.
    Tang Z; Lu B; Zhao Q; Wang J; Luo K; Yu D
    Small; 2014 Nov; 10(21):4332-9. PubMed ID: 25044955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of confinement on DNA, solvent and counterion dynamics in a model biological nanopore.
    Markosyan S; De Biase PM; Czapla L; Samoylova O; Singh G; Cuervo J; Tieleman DP; Noskov SY
    Nanoscale; 2014 Aug; 6(15):9006-16. PubMed ID: 24968858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing and controlling the motion of ssDNA in a solid-state nanopore.
    Luan B; Martyna G; Stolovitzky G
    Biophys J; 2011 Nov; 101(9):2214-22. PubMed ID: 22067161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor.
    Liu L; Yang C; Zhao K; Li J; Wu HC
    Nat Commun; 2013; 4():2989. PubMed ID: 24352224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocity of DNA during translocation through a solid-state nanopore.
    Plesa C; van Loo N; Ketterer P; Dietz H; Dekker C
    Nano Lett; 2015 Jan; 15(1):732-7. PubMed ID: 25496458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slowing down and stretching DNA with an electrically tunable nanopore in a p-n semiconductor membrane.
    Melnikov DV; Leburton JP; Gracheva ME
    Nanotechnology; 2012 Jun; 23(25):255501. PubMed ID: 22652932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography.
    Nelson EM; Li H; Timp G
    ACS Nano; 2014 Jun; 8(6):5484-93. PubMed ID: 24840912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable and reversible DNA translocation through a single-layer molybdenum disulfide nanopore.
    Si W; Zhang Y; Sha J; Chen Y
    Nanoscale; 2018 Nov; 10(41):19450-19458. PubMed ID: 30311618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.