These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 23876478)
1. Translatome analysis of CHO cells to identify key growth genes. Courtes FC; Lin J; Lim HL; Ng SW; Wong NS; Koh G; Vardy L; Yap MG; Loo B; Lee DY J Biotechnol; 2013 Sep; 167(3):215-24. PubMed ID: 23876478 [TBL] [Abstract][Full Text] [Related]
2. Large scale microarray profiling and coexpression network analysis of CHO cells identifies transcriptional modules associated with growth and productivity. Clarke C; Doolan P; Barron N; Meleady P; O'Sullivan F; Gammell P; Melville M; Leonard M; Clynes M J Biotechnol; 2011 Sep; 155(3):350-9. PubMed ID: 21801763 [TBL] [Abstract][Full Text] [Related]
3. Understanding translational control mechanisms of the mTOR pathway in CHO cells by polysome profiling. Courtes FC; Vardy L; Wong NS; Bardor M; Yap MG; Lee DY N Biotechnol; 2014 Sep; 31(5):514-23. PubMed ID: 24157712 [TBL] [Abstract][Full Text] [Related]
4. An Integrated Polysome Profiling and Ribosome Profiling Method to Investigate In Vivo Translatome. Jin HY; Xiao C Methods Mol Biol; 2018; 1712():1-18. PubMed ID: 29224064 [TBL] [Abstract][Full Text] [Related]
5. Polysome profiling of mAb producing CHO cell lines links translational control of cell proliferation and recombinant mRNA loading onto ribosomes with global and recombinant protein synthesis. Godfrey CL; Mead EJ; Daramola O; Dunn S; Hatton D; Field R; Pettman G; Smales CM Biotechnol J; 2017 Aug; 12(8):. PubMed ID: 28504349 [TBL] [Abstract][Full Text] [Related]
6. Comparative transcriptional analysis of mouse hybridoma and recombinant Chinese hamster ovary cells undergoing butyrate treatment. De Leon Gatti M; Wlaschin KF; Nissom PM; Yap M; Hu WS J Biosci Bioeng; 2007 Jan; 103(1):82-91. PubMed ID: 17298905 [TBL] [Abstract][Full Text] [Related]
7. Microarray and proteomics expression profiling identifies several candidates, including the valosin-containing protein (VCP), involved in regulating high cellular growth rate in production CHO cell lines. Doolan P; Meleady P; Barron N; Henry M; Gallagher R; Gammell P; Melville M; Sinacore M; McCarthy K; Leonard M; Charlebois T; Clynes M Biotechnol Bioeng; 2010 May; 106(1):42-56. PubMed ID: 20091739 [TBL] [Abstract][Full Text] [Related]
8. Reaching the depth of the Chinese hamster ovary cell transcriptome. Jacob NM; Kantardjieff A; Yusufi FN; Retzel EF; Mulukutla BC; Chuah SH; Yap M; Hu WS Biotechnol Bioeng; 2010 Apr; 105(5):1002-9. PubMed ID: 19882695 [TBL] [Abstract][Full Text] [Related]
9. Global insights into the Chinese hamster and CHO cell transcriptomes. Vishwanathan N; Yongky A; Johnson KC; Fu HY; Jacob NM; Le H; Yusufi FN; Lee DY; Hu WS Biotechnol Bioeng; 2015 May; 112(5):965-76. PubMed ID: 25450749 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional profiling of phenotypically different Epo-Fc expressing CHO clones by cross-species microarray analysis. Trummer E; Ernst W; Hesse F; Schriebl K; Lattenmayer C; Kunert R; Vorauer-Uhl K; Katinger H; Müller D Biotechnol J; 2008 Jul; 3(7):924-37. PubMed ID: 18481264 [TBL] [Abstract][Full Text] [Related]
11. Studying the Translatome with Polysome Profiling. Zuccotti P; Modelska A Methods Mol Biol; 2016; 1358():59-69. PubMed ID: 26463377 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome analyses of CHO cells with the next-generation microarray CHO41K: development and validation by analysing the influence of the growth stimulating substance IGF-1 substitute LongR(3.). Becker J; Timmermann C; Rupp O; Albaum SP; Brinkrolf K; Goesmann A; Pühler A; Tauch A; Noll T J Biotechnol; 2014 May; 178():23-31. PubMed ID: 24613301 [TBL] [Abstract][Full Text] [Related]
13. A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation. Könitzer JD; Müller MM; Leparc G; Pauers M; Bechmann J; Schulz P; Schaub J; Enenkel B; Hildebrandt T; Hampel M; Tolstrup AB Biotechnol J; 2015 Sep; 10(9):1412-23. PubMed ID: 26212696 [TBL] [Abstract][Full Text] [Related]
14. Quality assessment of cross-species hybridization of CHO transcriptome on a mouse DNA oligo microarray. Yee JC; Wlaschin KF; Chuah SH; Nissom PM; Hu WS Biotechnol Bioeng; 2008 Dec; 101(6):1359-65. PubMed ID: 18814282 [TBL] [Abstract][Full Text] [Related]
15. Initial identification of low temperature and culture stage induction of miRNA expression in suspension CHO-K1 cells. Gammell P; Barron N; Kumar N; Clynes M J Biotechnol; 2007 Jun; 130(3):213-8. PubMed ID: 17570552 [TBL] [Abstract][Full Text] [Related]
16. Towards next generation CHO cell biology: Bioinformatics methods for RNA-Seq-based expression profiling. Monger C; Kelly PS; Gallagher C; Clynes M; Barron N; Clarke C Biotechnol J; 2015 Jul; 10(7):950-66. PubMed ID: 26058739 [TBL] [Abstract][Full Text] [Related]
17. Comparative transcriptome analysis to unveil genes affecting recombinant protein productivity in mammalian cells. Yee JC; Gerdtzen ZP; Hu WS Biotechnol Bioeng; 2009 Jan; 102(1):246-63. PubMed ID: 18726962 [TBL] [Abstract][Full Text] [Related]
18. Initial transcriptome and proteome analyses of low culture temperature-induced expression in CHO cells producing erythropoietin. Baik JY; Lee MS; An SR; Yoon SK; Joo EJ; Kim YH; Park HW; Lee GM Biotechnol Bioeng; 2006 Feb; 93(2):361-71. PubMed ID: 16187333 [TBL] [Abstract][Full Text] [Related]
19. Using microarray technology to select housekeeping genes in Chinese hamster ovary cells. Bahr SM; Borgschulte T; Kayser KJ; Lin N Biotechnol Bioeng; 2009 Dec; 104(5):1041-6. PubMed ID: 19557832 [TBL] [Abstract][Full Text] [Related]
20. An improved analysis methodology for translational profiling by microarray. Sbarrato T; Spriggs RV; Wilson L; Jones C; Dudek K; Bastide A; Pichon X; Pöyry T; Willis AE RNA; 2017 Nov; 23(11):1601-1613. PubMed ID: 28842509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]