These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23876711)

  • 1. The dynamics of collagen uncrimping and lateral contraction in tendon and the effect of ionic concentration.
    Buckley MR; Sarver JJ; Freedman BR; Soslowsky LJ
    J Biomech; 2013 Sep; 46(13):2242-9. PubMed ID: 23876711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examining differences in local collagen fiber crimp frequency throughout mechanical testing in a developmental mouse supraspinatus tendon model.
    Miller KS; Connizzo BK; Feeney E; Tucker JJ; Soslowsky LJ
    J Biomech Eng; 2012 Apr; 134(4):041004. PubMed ID: 22667679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental evaluation of multiscale tendon mechanics.
    Fang F; Lake SP
    J Orthop Res; 2017 Jul; 35(7):1353-1365. PubMed ID: 27878999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology.
    Connizzo BK; Grodzinsky AJ
    J Biomech; 2017 Mar; 54():11-18. PubMed ID: 28233551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of collagen fascicles from the rabbit patellar tendon.
    Yamamoto E; Hayashi K; Yamamoto N
    J Biomech Eng; 1999 Feb; 121(1):124-31. PubMed ID: 10080098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tendon Biomechanics and Crimp Properties Following Fatigue Loading Are Influenced by Tendon Type and Age in Mice.
    Zuskov A; Freedman BR; Gordon JA; Sarver JJ; Buckley MR; Soslowsky LJ
    J Orthop Res; 2020 Jan; 38(1):36-42. PubMed ID: 31286548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing local collagen fiber re-alignment and crimp behavior throughout mechanical testing in a mature mouse supraspinatus tendon model.
    Miller KS; Connizzo BK; Feeney E; Soslowsky LJ
    J Biomech; 2012 Aug; 45(12):2061-5. PubMed ID: 22776688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tenocyte contraction induces crimp formation in tendon-like tissue.
    Herchenhan A; Kalson NS; Holmes DF; Hill P; Kadler KE; Margetts L
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):449-59. PubMed ID: 21735243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen structure of tendon relates to function.
    Franchi M; Trirè A; Quaranta M; Orsini E; Ottani V
    ScientificWorldJournal; 2007 Mar; 7():404-20. PubMed ID: 17450305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating changes in tendon crimp with fatigue loading as an ex vivo structural assessment of tendon damage.
    Freedman BR; Zuskov A; Sarver JJ; Buckley MR; Soslowsky LJ
    J Orthop Res; 2015 Jun; 33(6):904-10. PubMed ID: 25773654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tendon biomechanical properties enhance human wrist muscle specialization.
    Loren GJ; Lieber RL
    J Biomech; 1995 Jul; 28(7):791-9. PubMed ID: 7657677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The location-specific role of proteoglycans in the flexor carpi ulnaris tendon.
    Buckley MR; Huffman GR; Iozzo RV; Birk DE; Soslowsky LJ
    Connect Tissue Res; 2013; 54(6):367-73. PubMed ID: 23941206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recruitment of tendon crimp with applied tensile strain.
    Hansen KA; Weiss JA; Barton JK
    J Biomech Eng; 2002 Feb; 124(1):72-7. PubMed ID: 11871607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-strength relations in mammalian tendon.
    Lanir Y
    Biophys J; 1978 Nov; 24(2):541-54. PubMed ID: 728528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of transverse poroelastic mechanics of tendon using osmotic loading and biphasic mixture finite element modeling.
    Safa BN; Bloom ET; Lee AH; Santare MH; Elliott DM
    J Biomech; 2020 Aug; 109():109892. PubMed ID: 32807341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different regions of bovine deep digital flexor tendon exhibit distinct elastic, but not viscous, mechanical properties under both compression and shear loading.
    Fang F; Sawhney AS; Lake SP
    J Biomech; 2014 Sep; 47(12):2869-77. PubMed ID: 25113805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related differences in collagen crimp patterns in the superficial digital flexor tendon core region of untrained horses.
    Patterson-Kane JC; Firth EC; Goodship AE; Parry DA
    Aust Vet J; 1997 Jan; 75(1):39-44. PubMed ID: 9034498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fibre-reinforced poroviscoelastic model accurately describes the biomechanical behaviour of the rat Achilles tendon.
    Khayyeri H; Gustafsson A; Heuijerjans A; Matikainen MK; Julkunen P; Eliasson P; Aspenberg P; Isaksson H
    PLoS One; 2015; 10(6):e0126869. PubMed ID: 26030436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional stiffening with aging in tibialis anterior tendons of mice occurs independent of changes in collagen fibril morphology.
    Wood LK; Arruda EM; Brooks SV
    J Appl Physiol (1985); 2011 Oct; 111(4):999-1006. PubMed ID: 21737825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tendon and ligament fibrillar crimps give rise to left-handed helices of collagen fibrils in both planar and helical crimps.
    Franchi M; Ottani V; Stagni R; Ruggeri A
    J Anat; 2010 Mar; 216(3):301-9. PubMed ID: 20070421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.