BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23876734)

  • 1. Automated quantitative spectroscopic analysis combining background subtraction, cosmic ray removal, and peak fitting.
    James TM; Schlösser M; Lewis RJ; Fischer S; Bornschein B; Telle HH
    Appl Spectrosc; 2013 Aug; 67(8):949-59. PubMed ID: 23876734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully automated decomposition of Raman spectra into individual Pearson's type VII distributions applied to biological and biomedical samples.
    Schulze HG; Atkins CG; Devine DV; Blades MW; Turner RF
    Appl Spectrosc; 2015 Jan; 69(1):26-36. PubMed ID: 25498957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Savitzky-Golay-method-based fluorescence subtraction algorithm for rapid recovery of Raman spectra.
    Chen K; Zhang H; Wei H; Li Y
    Appl Opt; 2014 Aug; 53(24):5559-69. PubMed ID: 25321134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy.
    Zhao J; Lui H; McLean DI; Zeng H
    Appl Spectrosc; 2007 Nov; 61(11):1225-32. PubMed ID: 18028702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method for automated background subtraction from Raman spectra containing known contaminants.
    Beier BD; Berger AJ
    Analyst; 2009 Jun; 134(6):1198-202. PubMed ID: 19475148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated cosmic spike filter optimized for process Raman spectroscopy.
    Mozharov S; Nordon A; Littlejohn D; Marquardt B
    Appl Spectrosc; 2012 Nov; 66(11):1326-33. PubMed ID: 23146189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image curvature correction and cosmic removal for high-throughput dispersive Raman spectroscopy.
    Zhao J
    Appl Spectrosc; 2003 Nov; 57(11):1368-75. PubMed ID: 14658150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing Fully Automated Quality Control Methods for Preprocessing Raman Spectra of Biomedical and Biological Samples.
    Schulze HG; Rangan S; Piret JM; Blades MW; Turner RFB
    Appl Spectrosc; 2018 Sep; 72(9):1322-1340. PubMed ID: 29855196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and integration of block operations for data invariant automation of digital preprocessing and analysis of biological and biomedical Raman spectra.
    Schulze HG; Turner RF
    Appl Spectrosc; 2015 Jun; 69(6):643-64. PubMed ID: 25954920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of the rolling-circle filter for Raman background subtraction.
    Brandt NN; Brovko OO; Chikishev AY; Paraschuk OD
    Appl Spectrosc; 2006 Mar; 60(3):288-93. PubMed ID: 16608572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A practical algorithm to remove cosmic spikes in Raman imaging data for pharmaceutical applications.
    Zhang L; Henson MJ
    Appl Spectrosc; 2007 Sep; 61(9):1015-20. PubMed ID: 17910800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated real-time Raman system for clinical in vivo skin analysis.
    Zhao J; Lui H; McLean DI; Zeng H
    Skin Res Technol; 2008 Nov; 14(4):484-92. PubMed ID: 18937786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fast, automated, polynomial-based cosmic ray spike-removal method for the high-throughput processing of Raman spectra.
    Schulze HG; Turner RF
    Appl Spectrosc; 2013 Apr; 67(4):457-62. PubMed ID: 23601546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Vancouver Raman Algorithm Based on Empirical Mode Decomposition for Denoising Biological Samples.
    León-Bejarano F; Méndez MO; Ramírez-Elías MG; Alba A
    Appl Spectrosc; 2019 Dec; 73(12):1436-1450. PubMed ID: 31411494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automated high-performance signal-to-noise ratio enhancement based on an iterative three-point zero-order Savitzky-Golay filter.
    Schulze HG; Foist RB; Ivanov A; Turner RF
    Appl Spectrosc; 2008 Oct; 62(10):1160-6. PubMed ID: 18926027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated spectral smoothing with spatially adaptive penalized least squares.
    Urbas AA; Choquette SJ
    Appl Spectrosc; 2011 Jun; 65(6):665-77. PubMed ID: 21639989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring noise frequency spectrum to improve NIR determinations.
    Xie S; Xiang B; Yu L; Deng H
    Talanta; 2009 Dec; 80(2):895-902. PubMed ID: 19836570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time estimation of glucose concentration in algae cultivation system using Raman spectroscopy.
    Oh SK; Yoo SJ; Jeong DH; Lee JM
    Bioresour Technol; 2013 Aug; 142():131-7. PubMed ID: 23735794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing Savitzky-Golay parameters for improving spectral resolution and quantification in infrared spectroscopy.
    Zimmermann B; Kohler A
    Appl Spectrosc; 2013 Aug; 67(8):892-902. PubMed ID: 23876728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A two-dimensionally coincident second difference cosmic ray spike removal method for the fully automated processing of Raman spectra.
    Schulze HG; Turner RF
    Appl Spectrosc; 2014; 68(2):185-91. PubMed ID: 24480274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.