These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 23876767)

  • 21. Lowering detection limits for 1,2,3-trichloropropane in water using solid phase extraction coupled to purge and trap sample introduction in an isotope dilution GC-MS method.
    Liao W; Ghabour M; Draper WM; Chandrasena E
    Chemosphere; 2016 Sep; 158():171-6. PubMed ID: 27262687
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a screening method for the analysis of organic pollutants in water using dual stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry.
    Tölgyessy P; Vrana B; Krascsenits Z
    Talanta; 2011 Dec; 87():152-60. PubMed ID: 22099662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validation of adsorbents for sample preconcentration in compound-specific isotope analysis of common vapor intrusion pollutants.
    Klisch M; Kuder T; Philp RP; McHugh TE
    J Chromatogr A; 2012 Dec; 1270():20-7. PubMed ID: 23177155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Process sampling module coupled with purge and trap-GC-FID for in situ auto-monitoring of volatile organic compounds in wastewater.
    Liu HW; Liu YT; Wu BZ; Nian HC; Chen HJ; Chiu KH; Lo JG
    Talanta; 2009 Dec; 80(2):903-8. PubMed ID: 19836571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A headspace needle-trap method for the analysis of volatile organic compounds in whole blood.
    Alonso M; Castellanos M; Besalú E; Sanchez JM
    J Chromatogr A; 2012 Aug; 1252():23-30. PubMed ID: 22794794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphene packed needle trap device as a novel field sampler for determination of perchloroethylene in the air of dry cleaning establishments.
    Heidari M; Bahrami A; Ghiasvand AR; Emam MR; Shahna FG; Soltanian AR
    Talanta; 2015 Jan; 131():142-8. PubMed ID: 25281085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One step solvent bar microextraction and derivatization followed by gas chromatography-mass spectrometry for the determination of pharmaceutically active compounds in drain water samples.
    Guo L; Lee HK
    J Chromatogr A; 2012 Apr; 1235():26-33. PubMed ID: 22436669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gas chromatography coupled to tunable pulsed glow discharge time-of-flight mass spectrometry for environmental analysis.
    Solà-Vázquez A; Lara-Gonzalo A; Costa-Fernández JM; Pereiro R; Sanz-Medel A
    Analyst; 2010 May; 135(5):987-93. PubMed ID: 20419247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analytical performance of three commonly used extraction methods for the gas chromatography-mass spectrometry analysis of wine volatile compounds.
    Andujar-Ortiz I; Moreno-Arribas MV; Martín-Alvarez PJ; Pozo-Bayón MA
    J Chromatogr A; 2009 Oct; 1216(43):7351-7. PubMed ID: 19732903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous quantification of polar and non-polar volatile organic compounds in water samples by direct aqueous injection-gas chromatography/mass spectrometry.
    Aeppli C; Berg M; Hofstetter TB; Kipfer R; Schwarzenbach RP
    J Chromatogr A; 2008 Feb; 1181(1-2):116-24. PubMed ID: 18201709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dispersive liquid-liquid microextraction based on solidification of floating organic droplet followed by high-performance liquid chromatography with ultraviolet detection and liquid chromatography-tandem mass spectrometry for the determination of triclosan and 2,4-dichlorophenol in water samples.
    Zheng C; Zhao J; Bao P; Gao J; He J
    J Chromatogr A; 2011 Jun; 1218(25):3830-6. PubMed ID: 21601213
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a screening method to determine the pattern of fermentation metabolites in faecal samples using on-line purge-and-trap gas chromatographic-mass spectrometric analysis.
    De Preter V; Van Staeyen G; Esser D; Rutgeerts P; Verbeke K
    J Chromatogr A; 2009 Feb; 1216(9):1476-83. PubMed ID: 19167006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-targeted screening and analysis of volatile organic compounds in drinking water by DLLME with GC-MS.
    Yang X; Wang C; Shao H; Zheng Q
    Sci Total Environ; 2019 Dec; 694():133494. PubMed ID: 31398650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Headspace solid phase microextraction and gas chromatography-quadrupole mass spectrometry methodology for analysis of volatile compounds of marine salt as potential origin biomarkers.
    Silva I; Rocha SM; Coimbra MA
    Anal Chim Acta; 2009 Mar; 635(2):167-74. PubMed ID: 19216874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gas purge microsyringe extraction for quantitative direct gas chromatographic-mass spectrometric analysis of volatile and semivolatile chemicals.
    Yang C; Piao X; Qiu J; Wang X; Ren C; Li D
    J Chromatogr A; 2011 Mar; 1218(12):1549-55. PubMed ID: 21333296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid determination of dichlorodiphenyltrichloroethane and its main metabolites in aqueous samples by one-step microwave-assisted headspace controlled-temperature liquid-phase microextraction and gas chromatography with electron capture detection.
    Vinoth Kumar P; Jen JF
    Chemosphere; 2011 Mar; 83(2):200-7. PubMed ID: 21251695
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Headspace hollow fiber protected liquid-phase microextraction combined with gas chromatography-mass spectroscopy for speciation and determination of volatile organic compounds of selenium in environmental and biological samples.
    Ghasemi E; Sillanpää M; Najafi NM
    J Chromatogr A; 2011 Jan; 1218(3):380-6. PubMed ID: 21185031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a novel ultrasound-assisted headspace liquid-phase microextraction and its application to the analysis of chlorophenols in real aqueous samples.
    Xu H; Liao Y; Yao J
    J Chromatogr A; 2007 Oct; 1167(1):1-8. PubMed ID: 17765249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purge-assisted headspace solid-phase microextraction combined with gas chromatography-mass spectrometry for determination of chlorophenols in aqueous samples.
    Ho HP; Lee RJ; Lee MR
    J Chromatogr A; 2008 Dec; 1213(2):245-8. PubMed ID: 18990397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a stir bar sorptive extraction and thermal desorption-gas chromatography-mass spectrometry method for determining synthetic musks in water samples.
    Ramírez N; Marcé RM; Borrull F
    J Chromatogr A; 2011 Jan; 1218(1):156-61. PubMed ID: 21130460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.