These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23876781)

  • 1. Development of an eight-channel NMR system using RF detection coils for measuring spatial distributions of current density and water content in the PEM of a PEFC.
    Ogawa K; Yokouchi Y; Haishi T; Ito K
    J Magn Reson; 2013 Sep; 234():147-53. PubMed ID: 23876781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR measurement system including two synchronized ring buffers, with 128 rf coils for in situ water monitoring in a polymer electrolyte fuel cell.
    Ogawa K; Haishi T; Aoki M; Hasegawa H; Morisaka S; Hashimoto S
    Rev Sci Instrum; 2017 Jan; 88(1):014701. PubMed ID: 28147668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two dimensional distribution measurement of electric current generated in a polymer electrolyte fuel cell using 49 NMR surface coils.
    Ogawa K; Sasaki T; Yoneda S; Tsujinaka K; Asai R
    Magn Reson Imaging; 2018 Sep; 51():163-172. PubMed ID: 29778692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared imaging of water in a polymer electrolyte membrane during a fuel cell operation.
    Morita S; Jojima Y; Miyata Y; Kitagawa K
    Anal Chem; 2010 Nov; 82(22):9221-4. PubMed ID: 20964316
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Matsui H; Takao S; Higashi K; Kaneko T; Samjeské G; Uruga T; Tada M; Iwasawa Y
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6762-6776. PubMed ID: 35077130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially resolved, in situ potential measurements through porous electrodes as applied to fuel cells.
    Hess KC; Epting WK; Litster S
    Anal Chem; 2011 Dec; 83(24):9492-8. PubMed ID: 22040011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance imaging of water content across the Nafion membrane in an operational PEM fuel cell.
    Zhang Z; Martin J; Wu J; Wang H; Promislow K; Balcom BJ
    J Magn Reson; 2008 Aug; 193(2):259-66. PubMed ID: 18555714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative visualization of a gas diffusion layer in a polymer electrolyte fuel cell using synchrotron X-ray imaging techniques.
    Kim SG; Lee SJ
    J Synchrotron Radiat; 2013 Mar; 20(Pt 2):286-92. PubMed ID: 23412485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the water transport mechanism through the microporous layers of
    Chen YC; Dörenkamp T; Csoklich C; Berger A; Marone F; Eller J; Schmidt TJ; Büchi FN
    Energy Adv; 2023 Sep; 2(9):1447-1463. PubMed ID: 38014390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Microporous Layer on Heat and Mass Transfer in a Single Cell of Polymer Electrolyte Fuel Cell Using a Thin Polymer Electrolyte Membrane and a Thin Gas Diffusion Layer Operated at a High-Temperature Range.
    Nishimura A; Okado T; Kojima Y; Hu E
    ACS Omega; 2021 Jun; 6(22):14575-14584. PubMed ID: 34124481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ observations of water production and distribution in an operating H2/O2 PEM fuel cell assembly using 1H NMR microscopy.
    Feindel KW; LaRocque LP; Starke D; Bergens SH; Wasylishen RE
    J Am Chem Soc; 2004 Sep; 126(37):11436-7. PubMed ID: 15366879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peclet number analysis of cross-flow in porous gas diffusion layer of polymer electrolyte membrane fuel cell (PEMFC).
    Suresh PV; Jayanti S
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20120-20130. PubMed ID: 27074933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A macroscopic model of proton transport through the membrane-ionomer interface of a polymer electrolyte membrane fuel cell.
    Kumar M; Edwards BJ; Paddison SJ
    J Chem Phys; 2013 Feb; 138(6):064903. PubMed ID: 23425489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single bead detection with an NMR microcapillary probe.
    Nakashima Y; Boss M; Russek SE; Moreland J
    J Magn Reson; 2012 Nov; 224():71-7. PubMed ID: 23041798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water content distribution in a polymer electrolyte membrane for advanced fuel cell system with liquid water supply.
    Tsushima S; Teranishi K; Nishida K; Hirai S
    Magn Reson Imaging; 2005 Feb; 23(2):255-8. PubMed ID: 15833622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An open volume, high isolation, radio frequency surface coil system for pulsed magnetic resonance.
    Curto CA; Placidi G; Sotgiu A; Alecci M
    J Magn Reson; 2004 Dec; 171(2):353-8. PubMed ID: 15546763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printed sample holder for in-operando EPR spectroscopy on high temperature polymer electrolyte fuel cells.
    Niemöller A; Jakes P; Kayser S; Lin Y; Lehnert W; Granwehr J
    J Magn Reson; 2016 Aug; 269():157-161. PubMed ID: 27323280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying phosphoric acid in high-temperature polymer electrolyte fuel cell components by X-ray tomographic microscopy.
    Eberhardt SH; Marone F; Stampanoni M; Büchi FN; Schmidt TJ
    J Synchrotron Radiat; 2014 Nov; 21(Pt 6):1319-26. PubMed ID: 25343801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent-Free, One-Pot Synthesis of Tungsten Semi-Carbide for Stable and Self-Hydrating Short-Side-Chain-Based Polymer Electrolyte Membrane for Low-Humidity Hydrogen Fuel Cells.
    Neeshma M; Bhat SD
    ACS Appl Mater Interfaces; 2023 Nov; 15(46):53881-53890. PubMed ID: 37936373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.