These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 2387688)

  • 61. Lamellar separation in the human lens: the case for fibre folds. A combined in vivo and electron microscopy study.
    Brown NA; Vrensen G; Shun-Shin GA; Willekens B
    Eye (Lond); 1989; 3 ( Pt 5)():597-605. PubMed ID: 2630337
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Structural evidence of human nuclear fiber compaction as a function of ageing and cataractogenesis.
    Al-Ghoul KJ; Nordgren RK; Kuszak AJ; Freel CD; Costello MJ; Kuszak JR
    Exp Eye Res; 2001 Mar; 72(3):199-214. PubMed ID: 11180969
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Scanning electron-microscopic study of lens fibers of the pig.
    Hoyer HE
    Cell Tissue Res; 1982; 224(1):225-32. PubMed ID: 7094010
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Spheroliths of the lens].
    Pau H
    Klin Monbl Augenheilkd; 1984 Mar; 184(3):159-62. PubMed ID: 6727226
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The ultrastructure of the human lens capsule. I. Cataractous lenses from eyes with simple glaucoma. A transmission electron microscopic study.
    Seland JH
    Acta Ophthalmol (Copenh); 1978 Oct; 56(5):715-22. PubMed ID: 696260
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Maturation of fiber membranes in the human eye lens. Ultrastructural and Raman microspectroscopic observations.
    Vrensen GF; Duindam HJ
    Ophthalmic Res; 1995; 27 Suppl 1():78-85. PubMed ID: 8577466
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Changes in light scatter and width measurements from the human lens cortex with age.
    Smith GT; Smith RC; Brown NA; Bron AJ; Harris ML
    Eye (Lond); 1992; 6 ( Pt 1)():55-9. PubMed ID: 1426401
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Histopathological study of Emory mouse cataract.
    Uga S; Tsuchiya K; Ishikawa S
    Graefes Arch Clin Exp Ophthalmol; 1988; 226(1):15-21. PubMed ID: 3342971
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Scanning electron microscopic study of the development of crystalline lens fiber].
    Hotta K
    Nihon Ika Daigaku Zasshi; 1995 Apr; 62(2):161-75. PubMed ID: 7775653
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ultrastructure of contusion cataract.
    Asano N; Schlötzer-Schrehardt U; Dörfler S; Naumann GO
    Arch Ophthalmol; 1995 Feb; 113(2):210-5. PubMed ID: 7864754
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Finger-like projections of plasma membrane in the most senescent fiber cells of human lenses.
    Boyle DL; Takemoto LJ
    Curr Eye Res; 1998 Dec; 17(12):1118-23. PubMed ID: 9872533
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Electron microscopic study of an experimental contusion cataract of a Japanese monkey].
    Katsume Y; Yoshizuka M; Imayama H; Miyazaki M; Fujimoto S
    J UOEH; 1983 Dec; 5(4):441-8. PubMed ID: 6679651
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Some aspects of cataract morphology: a SEM-study.
    Jongebloed WL; Dijk F; Worst JG
    Doc Ophthalmol; 1988; 70(2-3):155-63. PubMed ID: 3234180
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Age-related cataract in the hereditary cataract rat (ICR/1): development and classification.
    Nishida S; Mizuno K; Matubara A; Kurono M
    Ophthalmic Res; 1992; 24(5):253-9. PubMed ID: 1475073
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A morphological description of human cataractous lenses by SEM.
    Jongebloed WL; Figueras MJ; Dijk F; Worst JF
    Doc Ophthalmol; 1987; 67(1-2):197-207. PubMed ID: 3428099
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Lens morphology, aging, and cataract.
    Tripathi RC; Tripathi BJ
    J Gerontol; 1983 May; 38(3):258-70. PubMed ID: 6841920
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Acid phosphatase localization in the equatorial region of human lenses.
    Gorthy WC
    Curr Eye Res; 1984 Sep; 3(9):1125-33. PubMed ID: 6488864
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cholesterol content of focal opacities and multilamellar bodies in the human lens: filipin cytochemistry and freeze fracture.
    VanMarle J; Vrensen GF
    Ophthalmic Res; 2000; 32(6):285-91. PubMed ID: 11015040
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Lens fiber organization in four avian species: a scanning electron microscopic study.
    Willekens B; Vrensen G
    Tissue Cell; 1985; 17(3):359-77. PubMed ID: 4012767
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Comparative light and scanning electron microscopic studies of the lenses in the insectivorous bat (Pipistrellus kuhlii) and Egyptian fruit bat (Rousettus aegyptiacus).
    Aboelnour A; Gewaily MS; Noreldin AE
    Microsc Res Tech; 2024 Jul; 87(7):1436-1442. PubMed ID: 38400686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.