BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23877222)

  • 1. Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications.
    Zhang L; Dong WF; Sun HB
    Nanoscale; 2013 Sep; 5(17):7664-84. PubMed ID: 23877222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superparamagnetic nanoparticles for biomedical applications.
    Xiao Y; Du J
    J Mater Chem B; 2020 Jan; 8(3):354-367. PubMed ID: 31868197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological applications of magnetic nanoparticles.
    Colombo M; Carregal-Romero S; Casula MF; Gutiérrez L; Morales MP; Böhm IB; Heverhagen JT; Prosperi D; Parak WJ
    Chem Soc Rev; 2012 Jun; 41(11):4306-34. PubMed ID: 22481569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics.
    Santhosh PB; Ulrih NP
    Cancer Lett; 2013 Aug; 336(1):8-17. PubMed ID: 23664890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive Imaging of Liposomal Delivery of Superparamagnetic Iron Oxide Nanoparticles to Orthotopic Human Breast Tumor in Mice.
    Kato Y; Zhu W; Backer MV; Neoh CC; Hapuarachchige S; Sarkar SK; Backer JM; Artemov D
    Pharm Res; 2015 Nov; 32(11):3746-3755. PubMed ID: 26078000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy.
    Mahmoudi M; Sant S; Wang B; Laurent S; Sen T
    Adv Drug Deliv Rev; 2011; 63(1-2):24-46. PubMed ID: 20685224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymeric liposomes-coated superparamagnetic iron oxide nanoparticles as contrast agent for targeted magnetic resonance imaging of cancer cells.
    Liao Z; Wang H; Lv R; Zhao P; Sun X; Wang S; Su W; Niu R; Chang J
    Langmuir; 2011 Mar; 27(6):3100-5. PubMed ID: 21341768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superparamagnetic iron oxide nanoparticles stabilized by a poly(amidoamine)-rhenium complex as potential theranostic probe.
    Maggioni D; Arosio P; Orsini F; Ferretti AM; Orlando T; Manfredi A; Ranucci E; Ferruti P; D'Alfonso G; Lascialfari A
    Dalton Trans; 2014 Jan; 43(3):1172-83. PubMed ID: 24169854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Status of Magnetite-Based Core@Shell Structures for Diagnosis and Therapy in Oncology Short running title: Biomedical Applications of Magnetite@Shell Structures.
    Andrade AL; Fabris JD; Domingues RZ; Pereira MC
    Curr Pharm Des; 2015; 21(37):5417-33. PubMed ID: 26377654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications.
    Lin MM; Kim DK; El Haj AJ; Dobson J
    IEEE Trans Nanobioscience; 2008 Dec; 7(4):298-305. PubMed ID: 19203873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of PEG molecular weight on stability, T₂ contrast, cytotoxicity, and cellular uptake of superparamagnetic iron oxide nanoparticles (SPIONs).
    Park YC; Smith JB; Pham T; Whitaker RD; Sucato CA; Hamilton JA; Bartolak-Suki E; Wong JY
    Colloids Surf B Biointerfaces; 2014 Jul; 119():106-14. PubMed ID: 24877593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents.
    Wei H; Bruns OT; Kaul MG; Hansen EC; Barch M; Wiśniowska A; Chen O; Chen Y; Li N; Okada S; Cordero JM; Heine M; Farrar CT; Montana DM; Adam G; Ittrich H; Jasanoff A; Nielsen P; Bawendi MG
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2325-2330. PubMed ID: 28193901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrast agents for MRI.
    Shokrollahi H
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4485-97. PubMed ID: 24094150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactoferrin-conjugated superparamagnetic iron oxide nanoparticles as a specific MRI contrast agent for detection of brain glioma in vivo.
    Xie H; Zhu Y; Jiang W; Zhou Q; Yang H; Gu N; Zhang Y; Xu H; Xu H; Yang X
    Biomaterials; 2011 Jan; 32(2):495-502. PubMed ID: 20970851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bifunctional nanoparticles constructed using one-pot encapsulation of a fluorescent polymer and magnetic (Fe3O4) nanoparticles in a silica shell.
    Lee CS; Chang HH; Bae PK; Jung J; Chung BH
    Macromol Biosci; 2013 Mar; 13(3):321-31. PubMed ID: 23281296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges.
    Laurent S; Saei AA; Behzadi S; Panahifar A; Mahmoudi M
    Expert Opin Drug Deliv; 2014 Sep; 11(9):1449-70. PubMed ID: 24870351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of PEG-iron oxide core-shell composite nanoparticles for thermal therapy.
    Wydra RJ; Kruse AM; Bae Y; Anderson KW; Hilt JZ
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4660-6. PubMed ID: 24094173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New forms of superparamagnetic nanoparticles for biomedical applications.
    Xu C; Sun S
    Adv Drug Deliv Rev; 2013 May; 65(5):732-43. PubMed ID: 23123295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing Fe3O4 nanoparticles into an efficient multimodality imaging and therapeutic probe.
    Hao R; Yu J; Ge Z; Zhao L; Sheng F; Xu L; Li G; Hou Y
    Nanoscale; 2013 Dec; 5(23):11954-63. PubMed ID: 24132045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics.
    Kandasamy G; Maity D
    Int J Pharm; 2015 Dec; 496(2):191-218. PubMed ID: 26520409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.