These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 23877324)

  • 1. Mean-field theory of random close packings of axisymmetric particles.
    Baule A; Mari R; Bo L; Portal L; Makse HA
    Nat Commun; 2013; 4():2194. PubMed ID: 23877324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random packings of spheres and spherocylinders simulated by mechanical contraction.
    Williams SR; Philipse AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051301. PubMed ID: 12786140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dense packings of polyhedra: Platonic and Archimedean solids.
    Torquato S; Jiao Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041104. PubMed ID: 19905270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hard convex lens-shaped particles: Densest-known packings and phase behavior.
    Cinacchi G; Torquato S
    J Chem Phys; 2015 Dec; 143(22):224506. PubMed ID: 26671389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random sequential adsorption of particles with tetrahedral symmetry.
    Kubala P; Cieśla M; Ziff RM
    Phys Rev E; 2019 Nov; 100(5-1):052903. PubMed ID: 31870013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adhesive loose packings of small dry particles.
    Liu W; Li S; Baule A; Makse HA
    Soft Matter; 2015 Aug; 11(32):6492-8. PubMed ID: 26186271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pushing the glass transition towards random close packing using self-propelled hard spheres.
    Ni R; Cohen Stuart MA; Dijkstra M
    Nat Commun; 2013; 4():2704. PubMed ID: 24162309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disordered strictly jammed binary sphere packings attain an anomalously large range of densities.
    Hopkins AB; Stillinger FH; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022205. PubMed ID: 24032826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Densest local sphere-packing diversity. II. Application to three dimensions.
    Hopkins AB; Stillinger FH; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011304. PubMed ID: 21405690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organizing principles for dense packings of nonspherical hard particles: not all shapes are created equal.
    Torquato S; Jiao Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011102. PubMed ID: 23005363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of particle shape on the density and microstructure of random packings.
    Wouterse A; Williams SR; Philipse AP
    J Phys Condens Matter; 2007 Oct; 19(40):406215. PubMed ID: 22049114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the jamming phase diagram for frictionless hard-sphere packings.
    Baranau V; Tallarek U
    Soft Matter; 2014 Oct; 10(39):7838-48. PubMed ID: 25155116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning approaches for the optimization of packing densities in granular matter.
    Baule A; Kurban E; Liu K; Makse HA
    Soft Matter; 2023 Sep; 19(36):6875-6884. PubMed ID: 37501593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal packings of superballs.
    Jiao Y; Stillinger FH; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041309. PubMed ID: 19518226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experiments on random packings of ellipsoids.
    Man W; Donev A; Stillinger FH; Sullivan MT; Russel WB; Heeger D; Inati S; Torquato S; Chaikin PM
    Phys Rev Lett; 2005 May; 94(19):198001. PubMed ID: 16090214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phase diagram for jammed matter.
    Song C; Wang P; Makse HA
    Nature; 2008 May; 453(7195):629-32. PubMed ID: 18509438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bending and elongation effects on the random packing of curved spherocylinders.
    Meng L; Li S; Lu P; Li T; Jin W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061309. PubMed ID: 23367934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of particle size distribution on random close packing of spheres.
    Desmond KW; Weeks ER
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022204. PubMed ID: 25215730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical theory of correlations in random packings of hard particles.
    Jin Y; Puckett JG; Makse HA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052207. PubMed ID: 25353787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibrium phase behavior and maximally random jammed state of truncated tetrahedra.
    Chen D; Jiao Y; Torquato S
    J Phys Chem B; 2014 Jul; 118(28):7981-92. PubMed ID: 24716833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.