BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 23877575)

  • 1. Uptake of arsenic by alkaline soils near alkaline coal fly ash disposal facilities.
    Khodadoust AP; Theis TL; Murarka IP; Naithani P; Babaeivelni K
    Environ Monit Assess; 2013 Dec; 185(12):10339-49. PubMed ID: 23877575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH.
    Komonweeraket K; Cetin B; Benson CH; Aydilek AH; Edil TB
    Waste Manag; 2015 Apr; 38():174-84. PubMed ID: 25555664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing As(III,V) adsorption by soils surrounding ash disposal facilities.
    Burns PE; Hyun S; Lee LS; Murarka I
    Chemosphere; 2006 Jun; 63(11):1879-91. PubMed ID: 16325227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaching of heavy metals from artificial soils composed of sewage sludge and fly ash.
    Zhang H; Sun L; Sun T
    Bull Environ Contam Toxicol; 2012 Mar; 88(3):406-12. PubMed ID: 22218744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaching mechanisms of heavy metals from fly ash stabilised soils.
    Leelarungroj K; Likitlersuang S; Chompoorat T; Janjaroen D
    Waste Manag Res; 2018 Jul; 36(7):616-623. PubMed ID: 29893191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remediation of lead polluted soil by active silicate material prepared from coal fly ash.
    Lei C; Chen T; Zhang QY; Long LS; Chen Z; Fu ZP
    Ecotoxicol Environ Saf; 2020 Dec; 206():111409. PubMed ID: 33011510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attenuation of trace elements in coal fly ash leachates by surfactant-modified zeolite.
    Neupane G; Donahoe RJ
    J Hazard Mater; 2012 Aug; 229-230():201-8. PubMed ID: 22721834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic and copper stabilisation in a contaminated soil by coal fly ash and green waste compost.
    Tsang DC; Yip AC; Olds WE; Weber PA
    Environ Sci Pollut Res Int; 2014 Sep; 21(17):10194-204. PubMed ID: 24859701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption-desorption of metolachlor and atrazine in Indian soils: effect of fly ash amendment.
    Ghosh RK; Singh N
    Environ Monit Assess; 2013 Feb; 185(2):1833-45. PubMed ID: 22572800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmentally available hexavalent chromium in soils and sediments impacted by dispersed fly ash in Sarigkiol basin (Northern Greece).
    Kazakis N; Kantiranis N; Kalaitzidou K; Kaprara E; Mitrakas M; Frei R; Vargemezis G; Vogiatzis D; Zouboulis A; Filippidis A
    Environ Pollut; 2018 Apr; 235():632-641. PubMed ID: 29331896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling batch leaching behavior of arsenic and selenium from bituminous coal fly ashes.
    Su T; Wang J
    Chemosphere; 2011 Nov; 85(8):1368-74. PubMed ID: 21880348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic concentrations in soils impacted by dam failure of coal-ash pond in Zemianske Kostolany, Slovakia.
    Jurkovič L; Hiller E; Veselská V; Pet'ková K
    Bull Environ Contam Toxicol; 2011 Apr; 86(4):433-7. PubMed ID: 21331534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of waste-derived organic and inorganic amendments on the mobility and bioavailability of arsenic and cadmium in alkaline and acid soils.
    Rocco C; Seshadri B; Adamo P; Bolan NS; Mbene K; Naidu R
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25896-25905. PubMed ID: 29961222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of fly ash amendment on persistence of metribuzin in soils.
    Singh N; Raunaq ; Singh SB
    J Environ Sci Health B; 2013; 48(2):108-13. PubMed ID: 23305278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent trends in the use of fly ash for the adsorption of pollutants in contaminated wastewater and soils: Effects on soil quality and plant growth.
    Usman M; Anastopoulos I; Hamid Y; Wakeel A
    Environ Sci Pollut Res Int; 2023 Dec; 30(60):124427-124446. PubMed ID: 35220542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobility and speciation of arsenic in the coal fly ashes collected from the Savannah River Site (SRS).
    Liu G; Cai Y; Hernandez D; Schrlau J; Allen M
    Chemosphere; 2016 May; 151():138-44. PubMed ID: 26933905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of soil amendments at a heavy loading rate associated with cover crops as green manures on the leaching of nutrients and heavy metals from a calcareous soil.
    Wang QR; Li YC; Klassen W
    J Environ Sci Health B; 2003 Nov; 38(6):865-81. PubMed ID: 14649715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of interactions between soil and coal fly ash leachates using column percolation tests.
    Tsiridis V; Petala M; Samaras P; Sakellaropoulos GP
    Waste Manag; 2015 Sep; 43():255-63. PubMed ID: 26087643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of solution chemistry on arsenic(V) removal by low-cost adsorbents.
    Wang Y; Tsang DC
    J Environ Sci (China); 2013 Nov; 25(11):2291-8. PubMed ID: 24552058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Re-using of coal-fired fly ash for arsenic vapors in-situ retention before SCR catalyst: Experiments and mechanisms.
    Li S; Gong H; Hu H; Liu H; Huang Y; Fu B; Wang L; Yao H
    Chemosphere; 2020 Sep; 254():126700. PubMed ID: 32334244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.