BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 23878140)

  • 1. Exome sequencing identifies recurring FLT3 N676K mutations in core-binding factor leukemia.
    Opatz S; Polzer H; Herold T; Konstandin NP; Ksienzyk B; Zellmeier E; Vosberg S; Graf A; Krebs S; Blum H; Hopfner KP; Kakadia PM; Schneider S; Dufour A; Braess J; Sauerland MC; Berdel WE; Büchner T; Woermann BJ; Hiddemann W; Spiekermann K; Bohlander SK; Greif PA
    Blood; 2013 Sep; 122(10):1761-9. PubMed ID: 23878140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leukemogenic potency of the novel FLT3-N676K mutant.
    Huang K; Yang M; Pan Z; Heidel FH; Scherr M; Eder M; Fischer T; Büsche G; Welte K; von Neuhoff N; Ganser A; Li Z
    Ann Hematol; 2016 Apr; 95(5):783-91. PubMed ID: 26891877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FMS-like tyrosine kinase 3-internal tandem duplication tyrosine kinase inhibitors display a nonoverlapping profile of resistance mutations in vitro.
    von Bubnoff N; Engh RA; Aberg E; Sänger J; Peschel C; Duyster J
    Cancer Res; 2009 Apr; 69(7):3032-41. PubMed ID: 19318574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internal tandem duplication of FLT3 deregulates proliferation and differentiation and confers resistance to the FLT3 inhibitor AC220 by Up-regulating RUNX1 expression in hematopoietic cells.
    Hirade T; Abe M; Onishi C; Taketani T; Yamaguchi S; Fukuda S
    Int J Hematol; 2016 Jan; 103(1):95-106. PubMed ID: 26590920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FLT3-ITD transduces autonomous growth signals during its biosynthetic trafficking in acute myelogenous leukemia cells.
    Yamawaki K; Shiina I; Murata T; Tateyama S; Maekawa Y; Niwa M; Shimonaka M; Okamoto K; Suzuki T; Nishida T; Abe R; Obata Y
    Sci Rep; 2021 Nov; 11(1):22678. PubMed ID: 34811450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity of ponatinib against clinically-relevant AC220-resistant kinase domain mutants of FLT3-ITD.
    Smith CC; Lasater EA; Zhu X; Lin KC; Stewart WK; Damon LE; Salerno S; Shah NP
    Blood; 2013 Apr; 121(16):3165-71. PubMed ID: 23430109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain.
    Heidel F; Solem FK; Breitenbuecher F; Lipka DB; Kasper S; Thiede MH; Brandts C; Serve H; Roesel J; Giles F; Feldman E; Ehninger G; Schiller GJ; Nimer S; Stone RM; Wang Y; Kindler T; Cohen PS; Huber C; Fischer T
    Blood; 2006 Jan; 107(1):293-300. PubMed ID: 16150941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breakdown of the FLT3-ITD/STAT5 axis and synergistic apoptosis induction by the histone deacetylase inhibitor panobinostat and FLT3-specific inhibitors.
    Pietschmann K; Bolck HA; Buchwald M; Spielberg S; Polzer H; Spiekermann K; Bug G; Heinzel T; Böhmer FD; Krämer OH
    Mol Cancer Ther; 2012 Nov; 11(11):2373-83. PubMed ID: 22942377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dissection of a hyper-aggressive CBFB-MYH11/FLT3-ITD-positive acute myeloid leukemia.
    Lo Iudice G; De Bellis E; Savi A; Guarnera L; Massacci A; De Nicola F; Goeman F; Ottone T; Divona M; Pallocca M; Fanciulli M; Voso MT; Ciliberto G
    J Transl Med; 2022 Jul; 20(1):311. PubMed ID: 35794567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of resistance against PKC412 in resistant FLT3-ITD positive human acute myeloid leukemia cells.
    Stölzel F; Steudel C; Oelschlägel U; Mohr B; Koch S; Ehninger G; Thiede C
    Ann Hematol; 2010 Jul; 89(7):653-62. PubMed ID: 20119833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quizartinib (AC220) is a potent second generation class III tyrosine kinase inhibitor that displays a distinct inhibition profile against mutant-FLT3, -PDGFRA and -KIT isoforms.
    Kampa-Schittenhelm KM; Heinrich MC; Akmut F; Döhner H; Döhner K; Schittenhelm MM
    Mol Cancer; 2013 Mar; 12():19. PubMed ID: 23497317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Mutation Profile in Acute Myeloid Leukemia Patients with
    Qin W; Chen X; Shen HJ; Wang Z; Cai X; Jiang N; Hua H
    Turk J Haematol; 2022 Jun; 39(2):84-93. PubMed ID: 35445594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FLT3 inhibitors in the treatment of acute myeloid leukemia: current status and future perspectives.
    Mosquera Orgueira A; Bao Pérez L; Mosquera Torre A; Peleteiro Raíndo A; Cid López M; Díaz Arias JÁ; Ferreiro Ferro R; Antelo Rodríguez B; González Pérez MS; Albors Ferreiro M; Alonso Vence N; Pérez Encinas MM; Bello López JL; Martinelli G; Cerchione C
    Minerva Med; 2020 Oct; 111(5):427-442. PubMed ID: 32955823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gata2 deficiency delays leukemogenesis while contributing to aggressive leukemia phenotype in Cbfb-MYH11 knockin mice.
    Saida S; Zhen T; Kim E; Yu K; Lopez G; McReynolds LJ; Liu PP
    Leukemia; 2020 Mar; 34(3):759-770. PubMed ID: 31624376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal Tandem Duplication in FLT3 Attenuates Proliferation and Regulates Resistance to the FLT3 Inhibitor AC220 by Modulating p21Cdkn1a and Pbx1 in Hematopoietic Cells.
    Abe M; Pelus LM; Singh P; Hirade T; Onishi C; Purevsuren J; Taketani T; Yamaguchi S; Fukuda S
    PLoS One; 2016; 11(7):e0158290. PubMed ID: 27387666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MZH29 is a novel potent inhibitor that overcomes drug resistance FLT3 mutations in acute myeloid leukemia.
    Xu B; Zhao Y; Wang X; Gong P; Ge W
    Leukemia; 2017 Apr; 31(4):913-921. PubMed ID: 27773927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias.
    Ommen HB; Schnittger S; Jovanovic JV; Ommen IB; Hasle H; Østergaard M; Grimwade D; Hokland P
    Blood; 2010 Jan; 115(2):198-205. PubMed ID: 19901261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia.
    Smith CC; Wang Q; Chin CS; Salerno S; Damon LE; Levis MJ; Perl AE; Travers KJ; Wang S; Hunt JP; Zarrinkar PP; Schadt EE; Kasarskis A; Kuriyan J; Shah NP
    Nature; 2012 Apr; 485(7397):260-3. PubMed ID: 22504184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concurrent Inhibition of Pim and FLT3 Kinases Enhances Apoptosis of FLT3-ITD Acute Myeloid Leukemia Cells through Increased Mcl-1 Proteasomal Degradation.
    Kapoor S; Natarajan K; Baldwin PR; Doshi KA; Lapidus RG; Mathias TJ; Scarpa M; Trotta R; Davila E; Kraus M; Huszar D; Tron AE; Perrotti D; Baer MR
    Clin Cancer Res; 2018 Jan; 24(1):234-247. PubMed ID: 29074603
    [No Abstract]   [Full Text] [Related]  

  • 20. Prospective evaluation of prognostic impact of KIT mutations on acute myeloid leukemia with RUNX1-RUNX1T1 and CBFB-MYH11.
    Ishikawa Y; Kawashima N; Atsuta Y; Sugiura I; Sawa M; Dobashi N; Yokoyama H; Doki N; Tomita A; Kiguchi T; Koh S; Kanamori H; Iriyama N; Kohno A; Moriuchi Y; Asada N; Hirano D; Togitani K; Sakura T; Hagihara M; Tomikawa T; Yokoyama Y; Asou N; Ohtake S; Matsumura I; Miyazaki Y; Naoe T; Kiyoi H
    Blood Adv; 2020 Jan; 4(1):66-75. PubMed ID: 31899799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.