These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 23878157)

  • 21. Population divergence in East African coelacanths.
    Lampert KP; Fricke H; Hissmann K; Schauer J; Blassmann K; Ngatunga BP; Schartl M
    Curr Biol; 2012 Jun; 22(11):R439-40. PubMed ID: 22677282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coelacanth genome sequence reveals the evolutionary history of vertebrate genes.
    Noonan JP; Grimwood J; Danke J; Schmutz J; Dickson M; Amemiya CT; Myers RM
    Genome Res; 2004 Dec; 14(12):2397-405. PubMed ID: 15545497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A thirteen-million-year divergence between two lineages of Indonesian coelacanths.
    Kadarusman ; Sugeha HY; Pouyaud L; Hocdé R; Hismayasari IB; Gunaisah E; Widiarto SB; Arafat G; Widyasari F; Mouillot D; Paradis E
    Sci Rep; 2020 Jan; 10(1):192. PubMed ID: 31932637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conservation of globin genes in the "living fossil" Latimeria chalumnae and reconstruction of the evolution of the vertebrate globin family.
    Schwarze K; Burmester T
    Biochim Biophys Acta; 2013 Sep; 1834(9):1801-12. PubMed ID: 23360762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Giant lungfish genome elucidates the conquest of land by vertebrates.
    Meyer A; Schloissnig S; Franchini P; Du K; Woltering JM; Irisarri I; Wong WY; Nowoshilow S; Kneitz S; Kawaguchi A; Fabrizius A; Xiong P; Dechaud C; Spaink HP; Volff JN; Simakov O; Burmester T; Tanaka EM; Schartl M
    Nature; 2021 Feb; 590(7845):284-289. PubMed ID: 33461212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Why coelacanths are not 'living fossils': a review of molecular and morphological data.
    Casane D; Laurenti P
    Bioessays; 2013 Apr; 35(4):332-8. PubMed ID: 23382020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two living species of coelacanths?
    Holder MT; Erdmann MV; Wilcox TP; Caldwell RL; Hillis DM
    Proc Natl Acad Sci U S A; 1999 Oct; 96(22):12616-20. PubMed ID: 10535971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ancestral developmental potentials in early bony fish contributed to vertebrate water-to-land transition.
    Bi XP; Zhang GJ
    Zool Res; 2021 Mar; 42(2):135-137. PubMed ID: 33709637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A living fossil in the genome of a living fossil: Harbinger transposons in the coelacanth genome.
    Smith JJ; Sumiyama K; Amemiya CT
    Mol Biol Evol; 2012 Mar; 29(3):985-93. PubMed ID: 22045999
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome size, GC percentage and 5mC level in the Indonesian coelacanth Latimeria menadoensis.
    Makapedua DM; Barucca M; Forconi M; Antonucci N; Bizzaro D; Amici A; Carradori MR; Olmo E; Canapa A
    Mar Genomics; 2011 Sep; 4(3):167-72. PubMed ID: 21867968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The coelacanth: Can a "living fossil" have active transposable elements in its genome?
    Naville M; Chalopin D; Casane D; Laurenti P; Volff JN
    Mob Genet Elements; 2015; 5(4):55-59. PubMed ID: 26442185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The first late cretaceous mawsoniid coelacanth (Sarcopterygii: Actinistia) from North America: Evidence of a lineage of extinct 'living fossils'.
    Cavin L; Toriño P; Van Vranken N; Carter B; Polcyn MJ; Winkler D
    PLoS One; 2021; 16(11):e0259292. PubMed ID: 34762682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oldest coelacanth, from the Early Devonian of Australia.
    Johanson Z; Long JA; Talent JA; Janvier P; Warren JW
    Biol Lett; 2006 Sep; 2(3):443-6. PubMed ID: 17148426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular phylogenetic information on the identity of the closest living relative(s) of land vertebrates.
    Zardoya R; Meyer A
    Naturwissenschaften; 1997 Sep; 84(9):389-97. PubMed ID: 9353759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Remarkable diversity of vomeronasal type 2 receptor (OlfC) genes of basal ray-finned fish and its evolutionary trajectory in jawed vertebrates.
    Zhang Z; Sakuma A; Kuraku S; Nikaido M
    Sci Rep; 2022 Apr; 12(1):6455. PubMed ID: 35440756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates.
    Venkatesh B; Erdmann MV; Brenner S
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11382-7. PubMed ID: 11553795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of Hoxa-11 in lineages phylogenetically positioned along the fin-limb transition.
    Chiu CH; Nonaka D; Xue L; Amemiya CT; Wagner GP
    Mol Phylogenet Evol; 2000 Nov; 17(2):305-16. PubMed ID: 11083943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tetrapod V1R-like ora genes in an early-diverging ray-finned fish species: the canonical six ora gene repertoire of teleost fish resulted from gene loss in a larger ancestral repertoire.
    Zapilko V; Korsching SI
    BMC Genomics; 2016 Jan; 17():83. PubMed ID: 26818853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Giant Mesozoic coelacanths (Osteichthyes, Actinistia) reveal high body size disparity decoupled from taxic diversity.
    Cavin L; Piuz A; Ferrante C; Guinot G
    Sci Rep; 2021 Jun; 11(1):11812. PubMed ID: 34083600
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolutionary changes in vertebrate genome signatures with special focus on coelacanth.
    Iwasaki Y; Abe T; Okada N; Wada K; Wada Y; Ikemura T
    DNA Res; 2014 Oct; 21(5):459-67. PubMed ID: 24800745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.