BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 23878197)

  • 41. The class-I HDAC inhibitor MGCD0103 induces apoptosis in Hodgkin lymphoma cell lines and synergizes with proteasome inhibitors by an HDAC6-independent mechanism.
    Buglio D; Mamidipudi V; Khaskhely NM; Brady H; Heise C; Besterman J; Martell RE; MacBeth K; Younes A
    Br J Haematol; 2010 Nov; 151(4):387-96. PubMed ID: 20880107
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells.
    Nawrocki ST; Carew JS; Pino MS; Highshaw RA; Andtbacka RH; Dunner K; Pal A; Bornmann WG; Chiao PJ; Huang P; Xiong H; Abbruzzese JL; McConkey DJ
    Cancer Res; 2006 Apr; 66(7):3773-81. PubMed ID: 16585204
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The pan-histone deacetylase inhibitor CR2408 disrupts cell cycle progression, diminishes proliferation and causes apoptosis in multiple myeloma cells.
    Baumann P; Junghanns C; Mandl-Weber S; Strobl S; Oduncu F; Schmidmaier R
    Br J Haematol; 2012 Mar; 156(5):633-42. PubMed ID: 22211565
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The combination of the farnesyl transferase inhibitor lonafarnib and the proteasome inhibitor bortezomib induces synergistic apoptosis in human myeloma cells that is associated with down-regulation of p-AKT.
    David E; Sun SY; Waller EK; Chen J; Khuri FR; Lonial S
    Blood; 2005 Dec; 106(13):4322-9. PubMed ID: 16118318
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Limited efficacy of specific HDAC6 inhibition in urothelial cancer cells.
    Rosik L; Niegisch G; Fischer U; Jung M; Schulz WA; Hoffmann MJ
    Cancer Biol Ther; 2014 Jun; 15(6):742-57. PubMed ID: 24618845
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bortezomib-induced "BRCAness" sensitizes multiple myeloma cells to PARP inhibitors.
    Neri P; Ren L; Gratton K; Stebner E; Johnson J; Klimowicz A; Duggan P; Tassone P; Mansoor A; Stewart DA; Lonial S; Boise LH; Bahlis NJ
    Blood; 2011 Dec; 118(24):6368-79. PubMed ID: 21917757
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Overexpression of salivary-type amylase reduces the sensitivity to bortezomib in multiple myeloma cells.
    Mizuno S; Hanamura I; Ota A; Karnan S; Narita T; Ri M; Mizutani M; Goto M; Gotou M; Tsunekawa N; Shikami M; Iida S; Hosokawa Y; Miwa H; Ueda R; Nitta M; Takami A
    Int J Hematol; 2015 Nov; 102(5):569-78. PubMed ID: 26341959
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteasome inhibition with bortezomib induces cell death in GBM stem-like cells and temozolomide-resistant glioma cell lines, but stimulates GBM stem-like cells' VEGF production and angiogenesis.
    Bota DA; Alexandru D; Keir ST; Bigner D; Vredenburgh J; Friedman HS
    J Neurosurg; 2013 Dec; 119(6):1415-23. PubMed ID: 24093630
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TM-233, a novel analog of 1'-acetoxychavicol acetate, induces cell death in myeloma cells by inhibiting both JAK/STAT and proteasome activities.
    Sagawa M; Tabayashi T; Kimura Y; Tomikawa T; Nemoto-Anan T; Watanabe R; Tokuhira M; Ri M; Hashimoto Y; Iida S; Kizaki M
    Cancer Sci; 2015 Apr; 106(4):438-46. PubMed ID: 25613668
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Syrbactin proteasome inhibitor TIR-199 overcomes bortezomib chemoresistance and inhibits multiple myeloma tumor growth in vivo.
    Pierce MR; Robinson RM; Ibarra-Rivera TR; Pirrung MC; Dolloff NG; Bachmann AS
    Leuk Res; 2020 Jan; 88():106271. PubMed ID: 31778912
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CEP-18770: A novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib.
    Piva R; Ruggeri B; Williams M; Costa G; Tamagno I; Ferrero D; Giai V; Coscia M; Peola S; Massaia M; Pezzoni G; Allievi C; Pescalli N; Cassin M; di Giovine S; Nicoli P; de Feudis P; Strepponi I; Roato I; Ferracini R; Bussolati B; Camussi G; Jones-Bolin S; Hunter K; Zhao H; Neri A; Palumbo A; Berkers C; Ovaa H; Bernareggi A; Inghirami G
    Blood; 2008 Mar; 111(5):2765-75. PubMed ID: 18057228
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The novel β2-selective proteasome inhibitor LU-102 decreases phosphorylation of I kappa B and induces highly synergistic cytotoxicity in combination with ibrutinib in multiple myeloma cells.
    Kraus J; Kraus M; Liu N; Besse L; Bader J; Geurink PP; de Bruin G; Kisselev AF; Overkleeft H; Driessen C
    Cancer Chemother Pharmacol; 2015 Aug; 76(2):383-96. PubMed ID: 26099967
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Targeting MAGE-C1/CT7 expression increases cell sensitivity to the proteasome inhibitor bortezomib in multiple myeloma cell lines.
    de Carvalho F; Costa ET; Camargo AA; Gregorio JC; Masotti C; Andrade VC; Strauss BE; Caballero OL; Atanackovic D; Colleoni GW
    PLoS One; 2011; 6(11):e27707. PubMed ID: 22110734
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interferon-γ-induced upregulation of immunoproteasome subunit assembly overcomes bortezomib resistance in human hematological cell lines.
    Niewerth D; Kaspers GJ; Assaraf YG; van Meerloo J; Kirk CJ; Anderl J; Blank JL; van de Ven PM; Zweegman S; Jansen G; Cloos J
    J Hematol Oncol; 2014 Jan; 7():7. PubMed ID: 24418325
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571.
    Yu C; Rahmani M; Conrad D; Subler M; Dent P; Grant S
    Blood; 2003 Nov; 102(10):3765-74. PubMed ID: 12893773
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Romidepsin induces cell cycle arrest, apoptosis, histone hyperacetylation and reduces matrix metalloproteinases 2 and 9 expression in bortezomib sensitized non-small cell lung cancer cells.
    Karthik S; Sankar R; Varunkumar K; Ravikumar V
    Biomed Pharmacother; 2014 Apr; 68(3):327-34. PubMed ID: 24485799
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Histone deacetylase 3 as a novel therapeutic target in multiple myeloma.
    Minami J; Suzuki R; Mazitschek R; Gorgun G; Ghosh B; Cirstea D; Hu Y; Mimura N; Ohguchi H; Cottini F; Jakubikova J; Munshi NC; Haggarty SJ; Richardson PG; Hideshima T; Anderson KC
    Leukemia; 2014 Mar; 28(3):680-9. PubMed ID: 23913134
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Combination of SAHA and bortezomib up-regulates CDKN2A and CDKN1A and induces apoptosis of Epstein-Barr virus-positive Wp-restricted Burkitt lymphoma and lymphoblastoid cell lines.
    Hui KF; Leung YY; Yeung PL; Middeldorp JM; Chiang AK
    Br J Haematol; 2014 Dec; 167(5):639-50. PubMed ID: 25155625
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proteasome inhibitors exert cytotoxicity and increase chemosensitivity via transcriptional repression of Notch1 in T-cell acute lymphoblastic leukemia.
    Koyama D; Kikuchi J; Hiraoka N; Wada T; Kurosawa H; Chiba S; Furukawa Y
    Leukemia; 2014 Jun; 28(6):1216-26. PubMed ID: 24301524
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma.
    Kuhn DJ; Berkova Z; Jones RJ; Woessner R; Bjorklund CC; Ma W; Davis RE; Lin P; Wang H; Madden TL; Wei C; Baladandayuthapani V; Wang M; Thomas SK; Shah JJ; Weber DM; Orlowski RZ
    Blood; 2012 Oct; 120(16):3260-70. PubMed ID: 22932796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.