These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23878269)

  • 1. Relationship between tibial acceleration and proximal anterior tibia shear force across increasing jump distance.
    Sell TC; Akins JS; Opp AR; Lephart SM
    J Appl Biomech; 2014 Feb; 30(1):75-81. PubMed ID: 23878269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between anterior tibial shear force during a jump landing task and quadriceps and hamstring strength.
    Bennett DR; Blackburn JT; Boling MC; McGrath M; Walusz H; Padua DA
    Clin Biomech (Bristol, Avon); 2008 Nov; 23(9):1165-71. PubMed ID: 18599168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictors of proximal tibia anterior shear force during a vertical stop-jump.
    Sell TC; Ferris CM; Abt JP; Tsai YS; Myers JB; Fu FH; Lephart SM
    J Orthop Res; 2007 Dec; 25(12):1589-97. PubMed ID: 17626264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between ground reaction force and tibial acceleration in vertical jumping.
    Elvin NG; Elvin AA; Arnoczky SP
    J Appl Biomech; 2007 Aug; 23(3):180-9. PubMed ID: 18089915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower extremity biomechanics during the landing of a stop-jump task.
    Yu B; Lin CF; Garrett WE
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):297-305. PubMed ID: 16378667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks.
    Chappell JD; Yu B; Kirkendall DT; Garrett WE
    Am J Sports Med; 2002; 30(2):261-7. PubMed ID: 11912098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anterior tibiofemoral intersegmental forces during landing are predicted by passive restraint measures in women.
    Schmitz RJ; Sauret JJ; Shultz SJ
    Knee; 2013 Dec; 20(6):493-9. PubMed ID: 23769139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The application of musculoskeletal modeling to investigate gender bias in non-contact ACL injury rate during single-leg landings.
    Ali N; Andersen MS; Rasmussen J; Robertson DG; Rouhi G
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1602-16. PubMed ID: 23387967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The correlation of segment accelerations and impact forces with knee angle in jump landing.
    Elvin NG; Elvin AA; Arnoczky SP; Torry MR
    J Appl Biomech; 2007 Aug; 23(3):203-12. PubMed ID: 18089917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A numerical simulation approach to studying anterior cruciate ligament strains and internal forces among young recreational women performing valgus inducing stop-jump activities.
    Kar J; Quesada PM
    Ann Biomed Eng; 2012 Aug; 40(8):1679-91. PubMed ID: 22527014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing.
    Mokhtarzadeh H; Yeow CH; Hong Goh JC; Oetomo D; Malekipour F; Lee PV
    J Biomech; 2013 Jul; 46(11):1913-20. PubMed ID: 23731572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the relationship between lower extremity muscles activation and peak vertical and posterior ground reaction forces during single leg drop landing.
    Mahaki M; Mi'mar R; Mahaki B
    J Sports Med Phys Fitness; 2015 Oct; 55(10):1145-9. PubMed ID: 25924564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of posterior tibial slope on knee biomechanics during functional activity.
    Shelburne KB; Kim HJ; Sterett WI; Pandy MG
    J Orthop Res; 2011 Feb; 29(2):223-31. PubMed ID: 20857489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of fatigue on knee kinetics and kinematics in stop-jump tasks.
    Chappell JD; Herman DC; Knight BS; Kirkendall DT; Garrett WE; Yu B
    Am J Sports Med; 2005 Jul; 33(7):1022-9. PubMed ID: 15983125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing.
    Withrow TJ; Huston LJ; Wojtys EM; Ashton-Miller JA
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):977-83. PubMed ID: 16790304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human hip and knee torque accommodations to anterior cruciate ligament dysfunction.
    Osternig LR; Ferber R; Mercer J; Davis H
    Eur J Appl Physiol; 2000 Sep; 83(1):71-6. PubMed ID: 11072776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The anterior cruciate ligament provides resistance to externally applied anterior tibial force but not to internal rotational torque during simulated weight-bearing flexion.
    Wünschel M; Müller O; Lo J; Obloh C; Wülker N
    Arthroscopy; 2010 Nov; 26(11):1520-7. PubMed ID: 20920837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of direction and reaction on the neuromuscular and biomechanical characteristics of the knee during tasks that simulate the noncontact anterior cruciate ligament injury mechanism.
    Sell TC; Ferris CM; Abt JP; Tsai YS; Myers JB; Fu FH; Lephart SM
    Am J Sports Med; 2006 Jan; 34(1):43-54. PubMed ID: 16210581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone.
    Shin CS; Chaudhari AM; Andriacchi TP
    Med Sci Sports Exerc; 2011 Aug; 43(8):1484-91. PubMed ID: 21266934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship of knee shear force and extensor moment on knee translations in females performing drop landings: a biplane fluoroscopy study.
    Torry MR; Myers C; Shelburne KB; Peterson D; Giphart JE; Pennington WW; Krong JP; Woo SL; Steadman JR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1019-24. PubMed ID: 21820780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.