These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23878971)

  • 1. Aggressiveness of Cephalosporium maydis causing late wilt of maize in Spain.
    García-Carneros AB; Girón I; Molinero-Ruiz L
    Commun Agric Appl Biol Sci; 2012; 77(3):173-9. PubMed ID: 23878971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cephalosporium maydis, the Cause of Late Wilt in Maize, a Pathogen New to Portugal and Spain.
    Molinero-Ruiz ML; Melero-Vara JM; Mateos A
    Plant Dis; 2010 Mar; 94(3):379. PubMed ID: 30754223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggressive strains of the late wilt fungus of corn exist in Israel in mixed populations and can specialize in disrupting growth or plant health.
    Shofman G; Bahouth M; Degani O
    Fungal Biol; 2022; 126(11-12):793-808. PubMed ID: 36517147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize.
    Lee K; Pan JJ; May G
    FEMS Microbiol Lett; 2009 Oct; 299(1):31-7. PubMed ID: 19694816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crop Cycle and Tillage Role in the Outbreak of Late Wilt Disease of Maize Caused by
    Degani O; Gordani A; Becher P; Dor S
    J Fungi (Basel); 2021 Aug; 7(9):. PubMed ID: 34575744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize.
    Wicklow DT; Rogers KD; Dowd PF; Gloer JB
    Fungal Biol; 2011 Feb; 115(2):133-42. PubMed ID: 21315311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilizing virus-induced gene silencing for the functional characterization of maize genes during infection with the fungal pathogen Ustilago maydis.
    van der Linde K; Doehlemann G
    Methods Mol Biol; 2013; 975():47-60. PubMed ID: 23386294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rapid and efficient method for assessing pathogenicity of ustilago maydis on maize and teosinte lines.
    Chavan S; Smith SM
    J Vis Exp; 2014 Jan; (83):e50712. PubMed ID: 24430201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential Role of Laccases in the Relationship of the Maize Late Wilt Causal Agent,
    Degani O; Goldblat Y
    J Fungi (Basel); 2020 May; 6(2):. PubMed ID: 32429509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Ustilago maydis as a fungal model for root infection studies.
    Mazaheri-Naeini M; Sabbagh SK; Martinez Y; Séjalon-Delmas N; Roux C
    Fungal Biol; 2015 Mar; 119(2-3):145-53. PubMed ID: 25749366
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Degani O; Dor S
    J Fungi (Basel); 2021 Apr; 7(4):. PubMed ID: 33919659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a pathogen, and their shared plant host.
    Rodriguez Estrada AE; Jonkers W; Kistler HC; May G
    Fungal Genet Biol; 2012 Jul; 49(7):578-87. PubMed ID: 22587948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative Competitiveness and Virulence of Four Clonal Lineages of Cephalosporium maydis from Egypt Toward Greenhouse-Grown Maize.
    Zeller KA; Ismael AM; El-Assiuty EM; Fahmy ZM; Bekheet FM; Leslie JF
    Plant Dis; 2002 Apr; 86(4):373-378. PubMed ID: 30818710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize.
    Wicklow DT; Jordan AM; Gloer JB
    Mycol Res; 2009 Dec; 113(Pt 12):1433-42. PubMed ID: 19825415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective chemical protection against the maize late wilt causal agent, Harpophora maydis, in the field.
    Degani O; Dor S; Movshowitz D; Fraidman E; Rabinovitz O; Graph S
    PLoS One; 2018; 13(12):e0208353. PubMed ID: 30562344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between
    Degani O; Dor S; Abraham D; Cohen R
    Microorganisms; 2020 Feb; 8(2):. PubMed ID: 32069974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial activity of pyrrocidines from Acremonium zeae against endophytes and pathogens of maize.
    Wicklow DT; Poling SM
    Phytopathology; 2009 Jan; 99(1):109-15. PubMed ID: 19055442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncovering the Host Range for Maize Pathogen
    Dor S; Degani O
    Plants (Basel); 2019 Jul; 8(8):. PubMed ID: 31366179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crop Rotation and Minimal Tillage Selectively Affect Maize Growth Promotion under Late Wilt Disease Stress.
    Degani O; Gordani A; Becher P; Chen A; Rabinovitz O
    J Fungi (Basel); 2022 May; 8(6):. PubMed ID: 35736069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating Azoxystrobin Seed Coating Against Maize Late Wilt Disease Using a Sensitive qPCR-Based Method.
    Degani O; Movshowitz D; Dor S; Meerson A; Goldblat Y; Rabinovitz O
    Plant Dis; 2019 Feb; 103(2):238-248. PubMed ID: 30457434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.