BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 23879303)

  • 1. Reactive-template fabrication of porous SnO2 nanotubes and their remarkable gas-sensing performance.
    Zhang J; Guo J; Xu H; Cao B
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7893-8. PubMed ID: 23879303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of SnO2 nanowires by solvent-free method using mesoporous silica template and their gas sensitive properties.
    Zhang H; Tan Z; Xu P; Oh K; Wu R; Shi W; Jiao Z
    J Nanosci Nanotechnol; 2011 Dec; 11(12):11114-8. PubMed ID: 22409067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection.
    Li Z; Zhao Q; Fan W; Zhan J
    Nanoscale; 2011 Apr; 3(4):1646-52. PubMed ID: 21279215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Needle-like Zn-doped SnO2 nanorods with enhanced photocatalytic and gas sensing properties.
    Huang H; Tian S; Xu J; Xie Z; Zeng D; Chen D; Shen G
    Nanotechnology; 2012 Mar; 23(10):105502. PubMed ID: 22362075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alumina decorated TiO2 nanotubes with ordered mesoporous walls as high sensitivity NO(x) gas sensors at room temperature.
    Lü R; Zhou W; Shi K; Yang Y; Wang L; Pan K; Tian C; Ren Z; Fu H
    Nanoscale; 2013 Sep; 5(18):8569-76. PubMed ID: 23892951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly sensitive room temperature H2S gas sensor based on SnO2 multi-tube arrays bio-templated from insect bristles.
    Tian J; Pan F; Xue R; Zhang W; Fang X; Liu Q; Wang Y; Zhang Z; Zhang D
    Dalton Trans; 2015 May; 44(17):7911-6. PubMed ID: 25823527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites.
    Hou LR; Yuan CZ; Peng Y
    J Hazard Mater; 2007 Jan; 139(2):310-5. PubMed ID: 16905248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries.
    Wu P; Du N; Zhang H; Yu J; Qi Y; Yang D
    Nanoscale; 2011 Feb; 3(2):746-50. PubMed ID: 21113552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SnO2 highly sensitive CO gas sensor based on quasi-molecular-imprinting mechanism design.
    Li C; Lv M; Zuo J; Huang X
    Sensors (Basel); 2015 Feb; 15(2):3789-800. PubMed ID: 25664435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol chemiresistor with enhanced discriminative ability from acetone based on Sr-doped SnO2 nanofibers.
    Jiang Z; Jiang T; Wang J; Wang Z; Xu X; Wang Z; Zhao R; Li Z; Wang C
    J Colloid Interface Sci; 2015 Jan; 437():252-258. PubMed ID: 25441358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Well-crystalline porous ZnO-SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material.
    Lamba R; Umar A; Mehta SK; Kansal SK
    Talanta; 2015 Jan; 131():490-8. PubMed ID: 25281131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-assisted synthesis of SnO₂ nanorods for oxygen gas sensing at room temperature.
    Azam A; Habib SS; Salah NA; Ahmed F
    Int J Nanomedicine; 2013; 8():3875-81. PubMed ID: 24143091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled fabrication of SnO(2) arrays of well-aligned nanotubes and nanowires.
    Shi L; Xu Y; Li Q
    Nanoscale; 2010 Oct; 2(10):2104-8. PubMed ID: 20689879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced ethanol gas sensing properties of SnO₂-core/ZnO-shell nanostructures.
    Tharsika T; Haseeb AS; Akbar SA; Sabri MF; Hoong WY
    Sensors (Basel); 2014 Aug; 14(8):14586-600. PubMed ID: 25116903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Macro-Porous Tin Oxide for Sensing of Sulfur Compound.
    Park NK; Lee TH; Sung YB; Kim YS; Lee TJ
    J Nanosci Nanotechnol; 2016 Mar; 16(3):3062-6. PubMed ID: 27455761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dense doping of indium to coral-like SnO2 nanostructures through a plasma-assisted strategy for sensitive and selective detection of chlorobenzene.
    Wan Y; Liu J; Li W; Meng F; Jin Z; Yu X; Huang X; Liu J
    Nanotechnology; 2011 Aug; 22(31):315501. PubMed ID: 21747163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of a SnO2-based acetone gas sensor enhanced by molecular imprinting.
    Tan W; Ruan X; Yu Q; Yu Z; Huang X
    Sensors (Basel); 2014 Dec; 15(1):352-64. PubMed ID: 25549174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption and photocatalysis efficiency of magnetite quantum dots anchored tin dioxide nanofibers for removal of mutagenic compound: Toxicity evaluation and antibacterial activity.
    Fakhri A; Naji M; Nejad PA
    J Photochem Photobiol B; 2017 Aug; 173():204-209. PubMed ID: 28595075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the enhanced gas sensing properties of tin dioxide samples doped with different catalytic transition elements.
    Yang F; Guo Z
    J Colloid Interface Sci; 2015 Jun; 448():265-74. PubMed ID: 25744860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-controllable one-dimensional SnO2 nanocrystals: synthesis, growth mechanism, and gas sensing property.
    Zhang DF; Sun LD; Xu G; Yan CH
    Phys Chem Chem Phys; 2006 Nov; 8(42):4874-80. PubMed ID: 17066177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.