BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23879719)

  • 1. The lid domain of the MCP hydrolase DxnB2 contributes to the reactivity toward recalcitrant PCB metabolites.
    Ruzzini AC; Bhowmik S; Yam KC; Ghosh S; Bolin JT; Eltis LD
    Biochemistry; 2013 Aug; 52(33):5685-5695. PubMed ID: 23879719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a C-C bond hydrolase from Sphingomonas wittichii RW1 with novel specificities towards polychlorinated biphenyl metabolites.
    Seah SY; Ke J; Denis G; Horsman GP; Fortin PD; Whiting CJ; Eltis LD
    J Bacteriol; 2007 Jun; 189(11):4038-45. PubMed ID: 17416660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a serine hydrolase as a key determinant in the microbial degradation of polychlorinated biphenyls.
    Seah SY; Labbé G; Nerdinger S; Johnson MR; Snieckus V; Eltis LD
    J Biol Chem; 2000 May; 275(21):15701-8. PubMed ID: 10821847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular basis for inhibition of BphD, a C-C bond hydrolase involved in polychlorinated biphenyls degradation: large 3-substituents prevent tautomerization.
    Bhowmik S; Horsman GP; Bolin JT; Eltis LD
    J Biol Chem; 2007 Dec; 282(50):36377-85. PubMed ID: 17932031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A substrate-assisted mechanism of nucleophile activation in a Ser-His-Asp containing C-C bond hydrolase.
    Ruzzini AC; Bhowmik S; Ghosh S; Yam KC; Bolin JT; Eltis LD
    Biochemistry; 2013 Oct; 52(42):7428-38. PubMed ID: 24067021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative specificities of two evolutionarily divergent hydrolases involved in microbial degradation of polychlorinated biphenyls.
    Seah SY; Labbé G; Kaschabek SR; Reifenrath F; Reineke W; Eltis LD
    J Bacteriol; 2001 Mar; 183(5):1511-6. PubMed ID: 11160080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The tautomeric half-reaction of BphD, a C-C bond hydrolase. Kinetic and structural evidence supporting a key role for histidine 265 of the catalytic triad.
    Horsman GP; Bhowmik S; Seah SY; Kumar P; Bolin JT; Eltis LD
    J Biol Chem; 2007 Jul; 282(27):19894-904. PubMed ID: 17442675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A glutathione S-transferase catalyzes the dehalogenation of inhibitory metabolites of polychlorinated biphenyls.
    Fortin PD; Horsman GP; Yang HM; Eltis LD
    J Bacteriol; 2006 Jun; 188(12):4424-30. PubMed ID: 16740949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and structural insight into the mechanism of BphD, a C-C bond hydrolase from the biphenyl degradation pathway.
    Horsman GP; Ke J; Dai S; Seah SY; Bolin JT; Eltis LD
    Biochemistry; 2006 Sep; 45(37):11071-86. PubMed ID: 16964968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The catalytic serine of meta-cleavage product hydrolases is activated differently for C-O bond cleavage than for C-C bond cleavage.
    Ruzzini AC; Horsman GP; Eltis LD
    Biochemistry; 2012 Jul; 51(29):5831-40. PubMed ID: 22747426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of 2-hydroxyl-6-oxo-6-phenylhexa-2,4-dienoic acid (HPDA) hydrolase (BphD enzyme) from the Rhodococcus sp. strain RHA1 of the PCB degradation pathway.
    Nandhagopal N; Yamada A; Hatta T; Masai E; Fukuda M; Mitsui Y; Senda T
    J Mol Biol; 2001 Jun; 309(5):1139-51. PubMed ID: 11399084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a carbon-carbon hydrolase from Mycobacterium tuberculosis involved in cholesterol metabolism.
    Lack NA; Yam KC; Lowe ED; Horsman GP; Owen RL; Sim E; Eltis LD
    J Biol Chem; 2010 Jan; 285(1):434-43. PubMed ID: 19875455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential Roles of Three Different Upper Pathway
    Mutter TY; Zylstra GJ
    Appl Environ Microbiol; 2021 Oct; 87(22):e0106721. PubMed ID: 34469199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and preliminary characterization of a serine hydrolase involved in the microbial degradation of polychlorinated biphenyls.
    Seah SY; Terracina G; Bolin JT; Riebel P; Snieckus V; Eltis LD
    J Biol Chem; 1998 Sep; 273(36):22943-9. PubMed ID: 9722515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A water-assisted nucleophilic mechanism utilized by BphD, the meta-cleavage product hydrolase in biphenyl degradation.
    Dong L; Zhang S; Liu Y
    J Mol Graph Model; 2017 Sep; 76():448-455. PubMed ID: 28783597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The bacterial
    Kuatsjah E; Chan ACK; Kobylarz MJ; Murphy MEP; Eltis LD
    J Biol Chem; 2017 Nov; 292(44):18290-18302. PubMed ID: 28935670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of an acyl-enzyme intermediate in a meta-cleavage product hydrolase reveals the versatility of the catalytic triad.
    Ruzzini AC; Ghosh S; Horsman GP; Foster LJ; Bolin JT; Eltis LD
    J Am Chem Soc; 2012 Mar; 134(10):4615-24. PubMed ID: 22339283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [New function of laccase from trametes sp. SQ01: transforming 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate].
    Yang X; Wen X
    Wei Sheng Wu Xue Bao; 2014 Aug; 54(8):913-8. PubMed ID: 25345023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The key role of a non-active-site residue Met148 on the catalytic efficiency of meta-cleavage product hydrolase BphD.
    Zhou H; Qu Y; Kong C; Shen E; Wang J; Zhang X; Ma Q; Zhou J
    Appl Microbiol Biotechnol; 2013 Dec; 97(24):10399-411. PubMed ID: 23494625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.