These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23880318)

  • 1. Analysis of the fate and transport of nC₆₀ nanoparticles in the subsurface using response surface methodology.
    Bai C; Eskridge KM; Li Y
    J Contam Hydrol; 2013 Sep; 152():60-9. PubMed ID: 23880318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the transport and retention of nC60 nanoparticles in the subsurface under different release scenarios.
    Bai C; Li Y
    J Contam Hydrol; 2012 Aug; 136-137():43-55. PubMed ID: 22683828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time series analysis of contaminant transport in the subsurface: applications to conservative tracer and engineered nanomaterials.
    Bai C; Li Y
    J Contam Hydrol; 2014 Aug; 164():153-62. PubMed ID: 24987973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters.
    Suhendra E; Chang CH; Hou WC; Hsieh YC
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.
    Pang L; Close M; Goltz M; Noonan M; Sinton L
    J Contam Hydrol; 2005 Apr; 77(3):165-94. PubMed ID: 15763354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport and retention of fullerene (nC60) nanoparticles in unsaturated porous media: effects of solution chemistry and solid phase coating.
    Chen L; Sabatini DA; Kibbey TC
    J Contam Hydrol; 2012 Sep; 138-139():104-12. PubMed ID: 22858671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The release of engineered nanomaterials to the environment.
    Gottschalk F; Nowack B
    J Environ Monit; 2011 May; 13(5):1145-55. PubMed ID: 21387066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current limitations and challenges in nanowaste detection, characterisation and monitoring.
    Part F; Zecha G; Causon T; Sinner EK; Huber-Humer M
    Waste Manag; 2015 Sep; 43():407-20. PubMed ID: 26117420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rapid screening technique for estimating nanoparticle transport in porous media.
    Bouchard D; Zhang W; Chang X
    Water Res; 2013 Aug; 47(12):4086-94. PubMed ID: 23141766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental exposure assessment of engineered nanoparticles: why REACH needs adjustment.
    Meesters JA; Veltman K; Hendriks AJ; van de Meent D
    Integr Environ Assess Manag; 2013 Jul; 9(3):e15-26. PubMed ID: 23633247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City.
    Musee N
    Hum Exp Toxicol; 2011 Sep; 30(9):1181-95. PubMed ID: 21148195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of the detection, fate and effects of engineered nanomaterials in wastewater treatment plants.
    Neale PA; Jämting ÅK; Escher BI; Herrmann J
    Water Sci Technol; 2013; 68(7):1440-53. PubMed ID: 24135091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective detection and characterization of nanoparticles from motor vehicles.
    Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN;
    Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field application of the Nanoparticle Emission Assessment Technique (NEAT): task-based air monitoring during the processing of engineered nanomaterials (ENM) at four facilities.
    Methner M; Beaucham C; Crawford C; Hodson L; Geraci C
    J Occup Environ Hyg; 2012; 9(9):543-55. PubMed ID: 22816668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomaterial transformation and association with fresh and freeze-dried wastewater activated sludge: implications for testing protocol and environmental fate.
    Kiser MA; Ladner DA; Hristovski KD; Westerhoff PK
    Environ Sci Technol; 2012 Jul; 46(13):7046-53. PubMed ID: 22320890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size.
    Wang C; Bobba AD; Attinti R; Shen C; Lazouskaya V; Wang LP; Jin Y
    Environ Sci Technol; 2012 Jul; 46(13):7151-8. PubMed ID: 22642719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Searching for global descriptors of engineered nanomaterial fate and transport in the environment.
    Westerhoff P; Nowack B
    Acc Chem Res; 2013 Mar; 46(3):844-53. PubMed ID: 22950943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.