These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23880439)

  • 1. Geometric mouse variation: implications to the axial ulnar loading protocol and animal specific calibration.
    Wagner DW; Chan S; Castillo AB; Beaupre GS
    J Biomech; 2013 Sep; 46(13):2271-6. PubMed ID: 23880439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies.
    Norman SC; Wagner DW; Beaupre GS; Castillo AB
    J Biomech; 2015 Jan; 48(1):53-8. PubMed ID: 25443882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a technique for studying functional adaptation of the mouse ulna in response to mechanical loading.
    Lee KC; Maxwell A; Lanyon LE
    Bone; 2002 Sep; 31(3):407-12. PubMed ID: 12231414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading.
    Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ
    J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Load/strain distribution between ulna and radius in the mouse forearm compression loading model.
    Lu Y; Thiagarajan G; Nicolella DP; Johnson ML
    Med Eng Phys; 2012 Apr; 34(3):350-6. PubMed ID: 21903442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system.
    Knothe Tate ML; Tami AE; Netrebko P; Milz S; Docheva D
    Technol Health Care; 2012; 20(5):363-78. PubMed ID: 23079942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of strain measurement in the mouse forearm using subject-specific finite element models, strain gaging, and digital image correlation.
    Begonia M; Dallas M; Johnson ML; Thiagarajan G
    Biomech Model Mechanobiol; 2017 Aug; 16(4):1243-1253. PubMed ID: 28204985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location.
    Hsieh YF; Robling AG; Ambrosius WT; Burr DB; Turner CH
    J Bone Miner Res; 2001 Dec; 16(12):2291-7. PubMed ID: 11760844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite-element analysis of the mouse proximal ulna in response to elbow loading.
    Jiang F; Jalali A; Deguchi C; Chen A; Liu S; Kondo R; Minami K; Horiuchi T; Li BY; Robling AG; Chen J; Yokota H
    J Bone Miner Metab; 2019 May; 37(3):419-429. PubMed ID: 30062431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis.
    Yang H; Butz KD; Duffy D; Niebur GL; Nauman EA; Main RP
    Bone; 2014 Sep; 66():131-9. PubMed ID: 24925445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and Mechanical Improvements to Bone Are Strain Dependent with Axial Compression of the Tibia in Female C57BL/6 Mice.
    Berman AG; Clauser CA; Wunderlin C; Hammond MA; Wallace JM
    PLoS One; 2015; 10(6):e0130504. PubMed ID: 26114891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an in vivo rabbit ulnar loading model.
    Baumann AP; Aref MW; Turnbull TL; Robling AG; Niebur GL; Allen MR; Roeder RK
    Bone; 2015 Jun; 75():55-61. PubMed ID: 25683214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The establishment of a new mechanobiology model of bone and functional adaptation studies in vivo].
    Chen XY; Zhang XZ; Zhang YL; Zhang CQ; Zhao HB; Zhang YH; Mao Y
    Zhonghua Yi Xue Za Zhi; 2007 May; 87(17):1160-4. PubMed ID: 17686232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of load conditions and strain distribution for in vivo murine tibia compression loading using experimentally informed finite element models.
    Pickering E; Silva MJ; Delisser P; Brodt MD; Gu Y; Pivonka P
    J Biomech; 2021 Jan; 115():110140. PubMed ID: 33348259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstructed bone end loads on the canine forelimb during gait.
    Coleman JC; Hart RT; Burr DB
    J Biomech; 2003 Dec; 36(12):1837-44. PubMed ID: 14614937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic response of the rat loading model: implications for studies of strain-adaptive bone formation.
    Hsieh YF; Wang T; Turner CH
    Bone; 1999 Sep; 25(3):379-82. PubMed ID: 10495144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Healing of non-displaced fractures produced by fatigue loading of the mouse ulna.
    Martinez MD; Schmid GJ; McKenzie JA; Ornitz DM; Silva MJ
    Bone; 2010 Jun; 46(6):1604-12. PubMed ID: 20215063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats.
    Mosley JR; Lanyon LE
    Bone; 1998 Oct; 23(4):313-8. PubMed ID: 9763142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and finite element analysis of dynamic loading of the mouse forearm.
    Thiagarajan G; Lu Y; Dallas M; Johnson ML
    J Orthop Res; 2014 Dec; 32(12):1580-8. PubMed ID: 25196694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age and gender related differences in load-strain response in C57Bl/6 mice.
    Mumtaz H; Lara-Castillo N; Scott JM; Begonia M; Dallas M; Johnson ML; Ganesh T
    Aging (Albany NY); 2020 Dec; 12(24):24721-24733. PubMed ID: 33346747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.