These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 23880473)

  • 1. Superficial dosimetry imaging of Čerenkov emission in electron beam radiotherapy of phantoms.
    Zhang R; Fox CJ; Glaser AK; Gladstone DJ; Pogue BW
    Phys Med Biol; 2013 Aug; 58(16):5477-93. PubMed ID: 23880473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superficial dosimetry imaging based on Čerenkov emission for external beam radiotherapy with megavoltage x-ray beam.
    Zhang R; Glaser AK; Gladstone DJ; Fox CJ; Pogue BW
    Med Phys; 2013 Oct; 40(10):101914. PubMed ID: 24089916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The visible signal responsible for proton therapy dosimetry using bare optical fibers is not Čerenkov radiation.
    Darafsheh A; Taleei R; Kassaee A; Finlay JC
    Med Phys; 2016 Nov; 43(11):5973. PubMed ID: 27806617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Projection imaging of photon beams by the Čerenkov effect.
    Glaser AK; Davis SC; McClatchy DM; Zhang R; Pogue BW; Gladstone DJ
    Med Phys; 2013 Jan; 40(1):012101. PubMed ID: 23298103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry.
    Jang KW; Yagi T; Pyeon CH; Yoo WJ; Shin SH; Jeong C; Min BJ; Shin D; Misawa T; Lee B
    J Biomed Opt; 2013 Feb; 18(2):27001. PubMed ID: 23377008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging Cerenkov emission as a quality assurance tool in electron radiotherapy.
    Helo Y; Rosenberg I; D'Souza D; Macdonald L; Speller R; Royle G; Gibson A
    Phys Med Biol; 2014 Apr; 59(8):1963-78. PubMed ID: 24694567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cherenkov emission-based external radiotherapy dosimetry: I. Formalism and feasibility.
    Zlateva Y; Muir BR; El Naqa I; Seuntjens JP
    Med Phys; 2019 May; 46(5):2370-2382. PubMed ID: 31034637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs.
    Rodrigues A; Sawkey D; Yin FF; Wu Q
    Med Phys; 2015 May; 42(5):2389-403. PubMed ID: 25979034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the Cerenkov scatter function: a convolution kernel for Cerenkov light dosimetry.
    Brost E; Watanabe Y
    J Biomed Opt; 2018 Oct; 23(10):1-12. PubMed ID: 30378350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC; Jiang R
    Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of a Monte Carlo model for multi leaf collimator based electron delivery.
    Kaluarachchi MM; Saleh ZH; Schwer ML; Klein EE
    Med Phys; 2020 Aug; 47(8):3586-3599. PubMed ID: 32324289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo study of in-field and out-of-field dose distributions from a linear accelerator operating with and without a flattening-filter.
    Almberg SS; Frengen J; Lindmo T
    Med Phys; 2012 Aug; 39(8):5194-203. PubMed ID: 22894444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical experience with routine diode dosimetry for electron beam radiotherapy.
    Yaparpalvi R; Fontenla DP; Vikram B
    Int J Radiat Oncol Biol Phys; 2000 Nov; 48(4):1259-65. PubMed ID: 11072187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of corrected Cerenkov emission during electron radiotherapy by Monte Carlo method.
    Li Y; Liu H; Huang N; Wang Z; Zhang C
    Appl Radiat Isot; 2021 Feb; 168():109481. PubMed ID: 33658131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote Cherenkov imaging-based quality assurance of a magnetic resonance image-guided radiotherapy system.
    Andreozzi JM; Mooney KE; Brůža P; Curcuru A; Gladstone DJ; Pogue BW; Green O
    Med Phys; 2018 Jun; 45(6):2647-2659. PubMed ID: 29663429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo modeling of the influence of strong magnetic fields on the stem-effect in plastic scintillation detectors used in radiotherapy dosimetry.
    Simiele E; Viscariello N; DeWerd L
    Med Phys; 2021 Mar; 48(3):1381-1394. PubMed ID: 33283279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of very high-energy electron beams for the irradiation of deep-seated targets.
    Böhlen TT; Germond JF; Traneus E; Bourhis J; Vozenin MC; Bailat C; Bochud F; Moeckli R
    Med Phys; 2021 Jul; 48(7):3958-3967. PubMed ID: 33884618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quenching-free fluorescence signal from plastic-fibres in proton dosimetry: understanding the influence of Čerenkov radiation.
    Brage Christensen J; Almhagen E; Nyström H; Andersen CE
    Phys Med Biol; 2018 Mar; 63(6):065001. PubMed ID: 29446760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technical note: Influence of the phantom material on the absorbed-dose energy dependence of the EBT3 radiochromic film for photons in the energy range 3 keV-18 MeV.
    Hermida-López M; Lüdemann L; Flühs A; Brualla L
    Med Phys; 2014 Nov; 41(11):112103. PubMed ID: 25370654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulation of backscatter from lead for clinical electron beams using EGSnrc.
    Chow JC; Grigorov GN
    Med Phys; 2008 Apr; 35(4):1241-50. PubMed ID: 18491516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.