These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 23880635)

  • 1. Optimizing field patching in passively scattered proton therapy with the use of beam current modulation.
    Hill PM; Klein EE; Bloch C
    Phys Med Biol; 2013 Aug; 58(16):5527-39. PubMed ID: 23880635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MO-F-213AB-01: Improving Dose Uniformity in Patch-Field Proton Therapy Using Beam Current Modulation.
    Hill P; Klein E; Bloch C
    Med Phys; 2012 Jun; 39(6Part21):3871. PubMed ID: 28518230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MO-F-213AB-02: Correcting Spread-Out Bragg Peak Slope Using Time-Resolved Monte Carlo Simulations and Beam Current Modulation.
    Hill P; Klein E; Bloch C
    Med Phys; 2012 Jun; 39(6Part21):3871-3872. PubMed ID: 28518275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Out-of-field dose equivalents delivered by passively scattered therapeutic proton beams for clinically relevant field configurations.
    Wroe A; Clasie B; Kooy H; Flanz J; Schulte R; Rosenfeld A
    Int J Radiat Oncol Biol Phys; 2009 Jan; 73(1):306-13. PubMed ID: 19100924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel patch-field design using an optimized grid filter for passively scattered proton beams.
    Li Y; Zhang X; Dong L; Mohan R
    Phys Med Biol; 2007 Jun; 52(12):N265-75. PubMed ID: 17664545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity analysis of Monte Carlo model of a gantry-mounted passively scattered proton system.
    Baradaran-Ghahfarokhi M; Reynoso F; Prusator MT; Sun B; Zhao T
    J Appl Clin Med Phys; 2020 Feb; 21(2):26-37. PubMed ID: 31898873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method.
    Titt U; Zheng Y; Vassiliev ON; Newhauser WD
    Phys Med Biol; 2008 Jan; 53(2):487-504. PubMed ID: 18185001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of the modelling of longitudinal dose distributions for double-scattered proton beams in a commercially-available treatment planning system.
    Ainsley CG; Lin L; McDonough JE
    Phys Med Biol; 2013 Jun; 58(11):N145-55. PubMed ID: 23640277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast range switching of passively scattered proton beams using a modulation wheel and dynamic beam current modulation.
    Sánchez-Parcerisa D; Pourbaix JC; Ainsley CG; Dolney D; Carabe A
    Phys Med Biol; 2014 Apr; 59(7):N19-26. PubMed ID: 24625619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dosimetric properties of a proton beamline dedicated to the treatment of ocular disease.
    Slopsema RL; Mamalui M; Zhao T; Yeung D; Malyapa R; Li Z
    Med Phys; 2014 Jan; 41(1):011707. PubMed ID: 24387499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dosimetric comparison between proton and photon beams in the moving gap region in cranio-spinal irradiation (CSI).
    Cheng CW; Das IJ; Srivastava SP; Zhao L; Wolanski M; Simmons J; Johnstone PA; Buchsbaum JC
    Acta Oncol; 2013 Apr; 52(3):553-60. PubMed ID: 22554342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TOPAS Simulation of the Mevion S250 compact proton therapy unit.
    Prusator M; Ahmad S; Chen Y
    J Appl Clin Med Phys; 2017 May; 18(3):88-95. PubMed ID: 28444840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility studies of a passive scatter proton therapy nozzle without a range modulator wheel.
    Harvey MC; Polf JC; Smith AR; Mohan R
    Med Phys; 2008 Jun; 35(6):2243-52. PubMed ID: 18649454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the parametrization of lateral dose profiles in proton radiation therapy.
    Bellinzona VE; Ciocca M; Embriaco A; Fontana A; Mairani A; Mori M; Parodi K
    Phys Med; 2015 Jul; 31(5):484-92. PubMed ID: 26032003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy.
    Wang X; Zhang X; Dong L; Liu H; Wu Q; Mohan R
    Int J Radiat Oncol Biol Phys; 2004 Nov; 60(4):1325-37. PubMed ID: 15519806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robustness of IMPT treatment plans with respect to inter-fractional set-up uncertainties: impact of various beam arrangements for cranial targets.
    Hopfgartner J; Stock M; Knäusl B; Georg D
    Acta Oncol; 2013 Apr; 52(3):570-9. PubMed ID: 23244675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental characterization of two-dimensional pencil beam scanning proton spot profiles.
    Lin L; Ainsley CG; McDonough JE
    Phys Med Biol; 2013 Sep; 58(17):6193-204. PubMed ID: 23948730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculations of neutron dose equivalent exposures from range-modulated proton therapy beams.
    Polf JC; Newhauser WD
    Phys Med Biol; 2005 Aug; 50(16):3859-73. PubMed ID: 16077232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of tissue heterogeneity on an in vivo range verification technique for proton therapy.
    Bentefour el H; Shikui T; Prieels D; Lu HM
    Phys Med Biol; 2012 Sep; 57(17):5473-84. PubMed ID: 22864304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4.
    Grevillot L; Bertrand D; Dessy F; Freud N; Sarrut D
    Phys Med Biol; 2011 Aug; 56(16):5203-19. PubMed ID: 21791731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.