These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 23880729)
21. Risk factors associated with human infection during the 2006 West Nile virus outbreak in Davis, a residential community in northern California. Nielsen CF; Armijos MV; Wheeler S; Carpenter TE; Boyce WM; Kelley K; Brown D; Scott TW; Reisen WK Am J Trop Med Hyg; 2008 Jan; 78(1):53-62. PubMed ID: 18187785 [TBL] [Abstract][Full Text] [Related]
22. Does variation in Culex (Diptera: Culicidae) vector competence enable outbreaks of West Nile virus in California? Reisen WK; Barker CM; Fang Y; Martinez VM J Med Entomol; 2008 Nov; 45(6):1126-38. PubMed ID: 19058638 [TBL] [Abstract][Full Text] [Related]
23. Vector competence of Culiseta incidens and Culex thriambus for West Nile virus. Reisen WK; Fang Y; Martinez VM J Am Mosq Control Assoc; 2006 Dec; 22(4):662-5. PubMed ID: 17304934 [TBL] [Abstract][Full Text] [Related]
24. Culex restuans (Diptera: Culicidae) relative abundance and vector competence for West Nile Virus. Ebel GD; Rochlin I; Longacker J; Kramer LD J Med Entomol; 2005 Sep; 42(5):838-43. PubMed ID: 16363169 [TBL] [Abstract][Full Text] [Related]
25. Vertebrate attenuated West Nile virus mutants have differing effects on vector competence in Culex tarsalis mosquitoes. Van Slyke GA; Jia Y; Whiteman MC; Wicker JA; Barrett ADT; Kramer LD J Gen Virol; 2013 May; 94(Pt 5):1069-1072. PubMed ID: 23303828 [TBL] [Abstract][Full Text] [Related]
26. Seasonal dynamics of four potential West Nile vector species in north-central Texas. Bolling BG; Kennedy JH; Zimmerman EG J Vector Ecol; 2005 Dec; 30(2):186-94. PubMed ID: 16599151 [TBL] [Abstract][Full Text] [Related]
27. Extrinsic Incubation Rate is Not Accelerated in Recent California Strains of West Nile Virus in Culex tarsalis (Diptera: Culicidae). Danforth ME; Reisen WK; Barker CM J Med Entomol; 2015 Sep; 52(5):1083-9. PubMed ID: 26336222 [TBL] [Abstract][Full Text] [Related]
28. Effects of temperature on the transmission of west nile virus by Culex tarsalis (Diptera: Culicidae). Reisen WK; Fang Y; Martinez VM J Med Entomol; 2006 Mar; 43(2):309-17. PubMed ID: 16619616 [TBL] [Abstract][Full Text] [Related]
29. West Nile virus neuroinvasive disease incidence in the United States, 2002-2006. Lindsey NP; Kuhn S; Campbell GL; Hayes EB Vector Borne Zoonotic Dis; 2008; 8(1):35-9. PubMed ID: 18237264 [TBL] [Abstract][Full Text] [Related]
30. Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission. Reisen WK; Fang Y; Martinez VM J Med Entomol; 2005 May; 42(3):367-75. PubMed ID: 15962789 [TBL] [Abstract][Full Text] [Related]
31. Vector competence of two Indian populations of Culex quinquefasciatus (Diptera: Culicidae) mosquitoes to three West Nile virus strains. Sudeep AB; Mandar P; Ghodke YK; George RP; Gokhale MD J Vector Borne Dis; 2015 Sep; 52(3):185-92. PubMed ID: 26418647 [TBL] [Abstract][Full Text] [Related]
32. Development and validation of a climate-based ensemble prediction model for West Nile Virus infection rates in Culex mosquitoes, Suffolk County, New York. Little E; Campbell SR; Shaman J Parasit Vectors; 2016 Aug; 9(1):443. PubMed ID: 27507279 [TBL] [Abstract][Full Text] [Related]
33. West Nile virus envelope protein glycosylation is required for efficient viral transmission by Culex vectors. Moudy RM; Zhang B; Shi PY; Kramer LD Virology; 2009 Apr; 387(1):222-8. PubMed ID: 19249803 [TBL] [Abstract][Full Text] [Related]
34. High subclinical West Nile virus incidence among nonvaccinated horses in northern California associated with low vector abundance and infection. Nielsen CF; Reisen WK; Armijos MV; Maclachlan NJ; Scott TW Am J Trop Med Hyg; 2008 Jan; 78(1):45-52. PubMed ID: 18187784 [TBL] [Abstract][Full Text] [Related]
35. Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans. Hamer GL; Kitron UD; Brawn JD; Loss SR; Ruiz MO; Goldberg TL; Walker ED J Med Entomol; 2008 Jan; 45(1):125-8. PubMed ID: 18283952 [TBL] [Abstract][Full Text] [Related]
36. Landscape, demographic, entomological, and climatic associations with human disease incidence of West Nile virus in the state of Iowa, USA. DeGroote JP; Sugumaran R; Brend SM; Tucker BJ; Bartholomay LC Int J Health Geogr; 2008 May; 7():19. PubMed ID: 18452604 [TBL] [Abstract][Full Text] [Related]
37. Broadscale spatial synchrony in a West Nile virus mosquito vector across multiple timescales. Campbell LP; Bauer AM; Tavares Y; Guralnick RP; Reuman D Sci Rep; 2024 May; 14(1):12479. PubMed ID: 38816487 [TBL] [Abstract][Full Text] [Related]
38. Implications of spatial patterns of roosting and movements of American robins for West Nile virus transmission. Benson TJ; Ward MP; Lampman RL; Raim A; Weatherhead PJ Vector Borne Zoonotic Dis; 2012 Oct; 12(10):877-85. PubMed ID: 22651391 [TBL] [Abstract][Full Text] [Related]
39. Is nonviremic transmission of West Nile virus by Culex mosquitoes (Diptera: Culicidae) nonviremic? Reisen WK; Fang Y; Martinez V J Med Entomol; 2007 Mar; 44(2):299-302. PubMed ID: 17427700 [TBL] [Abstract][Full Text] [Related]
40. The role of different Culex mosquito species in the transmission of West Nile virus and avian malaria parasites in Mediterranean areas. Ferraguti M; Heesterbeek H; Martínez-de la Puente J; Jiménez-Clavero MÁ; Vázquez A; Ruiz S; Llorente F; Roiz D; Vernooij H; Soriguer R; Figuerola J Transbound Emerg Dis; 2021 Mar; 68(2):920-930. PubMed ID: 32748497 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]