BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 23880868)

  • 1. Biomechanical comparison of vertebral augmentation with silicone and PMMA cement and two filling grades.
    Schulte TL; Keiler A; Riechelmann F; Lange T; Schmoelz W
    Eur Spine J; 2013 Dec; 22(12):2695-701. PubMed ID: 23880868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical evaluation of calcium phosphate-based nanocomposite versus polymethylmethacrylate cement for percutaneous kyphoplasty.
    Lu Q; Liu C; Wang D; Liu H; Yang H; Yang L
    Spine J; 2019 Nov; 19(11):1871-1884. PubMed ID: 31202837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adjacent vertebral failure after vertebroplasty: a biomechanical study of low-modulus PMMA cement.
    Boger A; Heini P; Windolf M; Schneider E
    Eur Spine J; 2007 Dec; 16(12):2118-25. PubMed ID: 17713795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biomechanical investigation of vertebroplasty in osteoporotic compression fractures and in prophylactic vertebral reinforcement.
    Furtado N; Oakland RJ; Wilcox RK; Hall RM
    Spine (Phila Pa 1976); 2007 Aug; 32(17):E480-7. PubMed ID: 17762281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical evaluation of kyphoplasty with calcium sulfate cement in a cadaveric osteoporotic vertebral compression fracture model.
    Perry A; Mahar A; Massie J; Arrieta N; Garfin S; Kim C
    Spine J; 2005; 5(5):489-93. PubMed ID: 16153574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Augmentation of mechanical properties in osteoporotic vertebral bones--a biomechanical investigation of vertebroplasty efficacy with different bone cements.
    Heini PF; Berlemann U; Kaufmann M; Lippuner K; Fankhauser C; van Landuyt P
    Eur Spine J; 2001 Apr; 10(2):164-71. PubMed ID: 11345639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term effects of vertebroplasty: adjacent vertebral fractures.
    Baroud G; Vant C; Wilcox R
    J Long Term Eff Med Implants; 2006; 16(4):265-80. PubMed ID: 17073569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of endplate-to-endplate cement augmentation on vertebral strength and stiffness in vertebroplasty.
    Steens J; Verdonschot N; Aalsma AM; Hosman AJ
    Spine (Phila Pa 1976); 2007 Jul; 32(15):E419-22. PubMed ID: 17621198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty.
    Matsuura Y; Giambini H; Ogawa Y; Fang Z; Thoreson AR; Yaszemski MJ; Lu L; An KN
    Spine (Phila Pa 1976); 2014 Oct; 39(22):E1291-6. PubMed ID: 25077904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biomechanical study of polymethyl methacrylate bone cement and allogeneic bone for strengthening sheep vertebrae].
    Wang Z; Zhang X; Li Z; Feng Q; Chen J; Xie W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Apr; 35(4):471-476. PubMed ID: 33855832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty.
    Lim TH; Brebach GT; Renner SM; Kim WJ; Kim JG; Lee RE; Andersson GB; An HS
    Spine (Phila Pa 1976); 2002 Jun; 27(12):1297-302. PubMed ID: 12065977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does the cement stiffness affect fatigue fracture strength of vertebrae after cement augmentation in osteoporotic patients?
    Kolb JP; Kueny RA; Püschel K; Boger A; Rueger JM; Morlock MM; Huber G; Lehmann W
    Eur Spine J; 2013 Jul; 22(7):1650-6. PubMed ID: 23677522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cement augmentation on the spine : Biomechanical considerations].
    Kolb JP; Weiser L; Kueny RA; Huber G; Rueger JM; Lehmann W
    Orthopade; 2015 Sep; 44(9):672-680. PubMed ID: 26193968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PMMA-augmentation of incompletely cannulated pedicle screws: a cadaver study to determine the benefits in the osteoporotic spine.
    Goost H; Deborre C; Wirtz DC; Burger C; Prescher A; Fölsch C; Pflugmacher R; Kabir K
    Technol Health Care; 2014; 22(4):607-15. PubMed ID: 24837053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical changes after the augmentation of experimental osteoporotic vertebral compression fractures in the cadaveric thoracic spine.
    Kayanja MM; Togawa D; Lieberman IH
    Spine J; 2005; 5(1):55-63. PubMed ID: 15653085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical behavior of MRI-signal-inducing bone cements after vertebroplasty in osteoporotic vertebral bodies: An experimental cadaver study.
    Wichlas F; Trzenschik H; Tsitsilonis S; Rohlmann A; Bail HJ
    Clin Biomech (Bristol, Avon); 2014 May; 29(5):571-6. PubMed ID: 24703828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suitability of a calcium phosphate cement in osteoporotic vertebral body fracture augmentation: a controlled, randomized, clinical trial of balloon kyphoplasty comparing calcium phosphate versus polymethylmethacrylate.
    Blattert TR; Jestaedt L; Weckbach A
    Spine (Phila Pa 1976); 2009 Jan; 34(2):108-14. PubMed ID: 19139662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty for the management of osteoporotic compression fractures.
    Tohmeh AG; Mathis JM; Fenton DC; Levine AM; Belkoff SM
    Spine (Phila Pa 1976); 1999 Sep; 24(17):1772-6. PubMed ID: 10488505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics of prophylactic vertebral reinforcement.
    Sun K; Liebschner MA
    Spine (Phila Pa 1976); 2004 Jul; 29(13):1428-35; discusssion 1435. PubMed ID: 15223933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Biomechanical study of vertebroplasty with geneX(®) cement augmentation in a calf osteoporotic vertebral compression fracture model].
    Zhang S; Jiang J; Zhu Q; Huang Z
    Nan Fang Yi Ke Da Xue Xue Bao; 2012 Jun; 32(6):843-6. PubMed ID: 22699067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.