These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 23880913)

  • 1. Nanomaterial disposal by incineration.
    Holder AL; Vejerano EP; Zhou X; Marr LC
    Environ Sci Process Impacts; 2013 Sep; 15(9):1652-64. PubMed ID: 23880913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland.
    Boesch ME; Vadenbo C; Saner D; Huter C; Hellweg S
    Waste Manag; 2014 Feb; 34(2):378-89. PubMed ID: 24315553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emissions investigation for a novel medical waste incinerator.
    Xie R; Li WJ; Li J; Wu BL; Yi JQ
    J Hazard Mater; 2009 Jul; 166(1):365-71. PubMed ID: 19111396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment and use of air pollution control residues from MSW incineration: an overview.
    Quina MJ; Bordado JC; Quinta-Ferreira RM
    Waste Manag; 2008 Nov; 28(11):2097-121. PubMed ID: 18037284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-stage system to remove mercury and dioxins in flue gases.
    Hylander LD; Sollenberg H; Westas H
    Sci Total Environ; 2003 Mar; 304(1-3):137-44. PubMed ID: 12663178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate of nano titanium dioxide during combustion of engineered nanomaterial-containing waste in a municipal solid waste incineration plant.
    Oischinger J; Meiller M; Daschner R; Hornung A; Warnecke R
    Waste Manag Res; 2019 Oct; 37(10):1033-1042. PubMed ID: 31345141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Process engineering design of pathological waste incinerator with an integrated combustion gases treatment unit.
    Shaaban AF
    J Hazard Mater; 2007 Jun; 145(1-2):195-202. PubMed ID: 17166659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitrification of bottom ash from a municipal solid waste incinerator.
    Xiao Y; Oorsprong M; Yang Y; Voncken JH
    Waste Manag; 2008; 28(6):1020-6. PubMed ID: 17481884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental assessment of waste management in Greenland: current practice and potential future developments.
    Eisted R; Christensen TH
    Waste Manag Res; 2013 May; 31(5):502-9. PubMed ID: 23539347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective incineration technology with a new-type rotary waste incinerator.
    Chen LQ; Zhu JZ; Cai MZ; Xie XY
    J Environ Sci (China); 2003 Nov; 15(6):768-72. PubMed ID: 14758894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life cycle assessment of selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator.
    Møller J; Munk B; Crillesen K; Christensen TH
    Waste Manag; 2011 Jun; 31(6):1184-93. PubMed ID: 21277187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical model for a watering plan to wash out organic matter from the municipal solid waste incinerator bottom ash layer in closed system disposal facilities.
    Ishii K; Furuichi T; Tanikawa N
    Waste Manag; 2009 Feb; 29(2):513-21. PubMed ID: 18691865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation of halogens in Izmit hazardous and clinical waste incinerator.
    Cetin S; Veli S; Ayberk S
    Waste Manag; 2004; 24(2):183-91. PubMed ID: 14761757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Industrial hazardous waste treatment featuring a rotary kiln and grate furnace incinerator: a case study in China.
    Ma P; Ma Z; Yan J; Chi Y; Ni M; Cen K
    Waste Manag Res; 2011 Oct; 29(10):1108-12. PubMed ID: 21746756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic carbon leaching behavior from incinerator bottom ash.
    Guimaraes AL; Okuda T; Nishijima W; Okada M
    J Hazard Mater; 2006 Sep; 137(2):1096-101. PubMed ID: 16675109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.
    Waldner MH; Halter R; Sigg A; Brosch B; Gehrmann HJ; Keunecke M
    Waste Manag; 2013 Feb; 33(2):317-26. PubMed ID: 23044260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of biosolids management options and co-incineration of a biosolid-derived fuel.
    Roy MM; Dutta A; Corscadden K; Havard P; Dickie L
    Waste Manag; 2011 Nov; 31(11):2228-35. PubMed ID: 21763120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.
    Damgaard A; Riber C; Fruergaard T; Hulgaard T; Christensen TH
    Waste Manag; 2010 Jul; 30(7):1244-50. PubMed ID: 20378326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan.
    Chang CY; Wang CF; Mui DT; Cheng MT; Chiang HL
    J Hazard Mater; 2009 Jun; 165(1-3):766-73. PubMed ID: 19046804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.