BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 23881208)

  • 1. Using temporal modulation sensitivity to select stimulation sites for processor MAPs in cochlear implant listeners.
    Garadat SN; Zwolan TA; Pfingst BE
    Audiol Neurootol; 2013; 18(4):247-60. PubMed ID: 23881208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of site-specific level adjustments on speech recognition with cochlear implants.
    Zhou N; Pfingst BE
    Ear Hear; 2014; 35(1):30-40. PubMed ID: 24225651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Across-site patterns of modulation detection: relation to speech recognition.
    Garadat SN; Zwolan TA; Pfingst BE
    J Acoust Soc Am; 2012 May; 131(5):4030-41. PubMed ID: 22559376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplitude mapping and phoneme recognition in cochlear implant listeners.
    Zeng FG; Galvin JJ
    Ear Hear; 1999 Feb; 20(1):60-74. PubMed ID: 10037066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Psychophysically based site selection coupled with dichotic stimulation improves speech recognition in noise with bilateral cochlear implants.
    Zhou N; Pfingst BE
    J Acoust Soc Am; 2012 Aug; 132(2):994-1008. PubMed ID: 22894220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal processing and speech recognition in cochlear implant users.
    Fu QJ
    Neuroreport; 2002 Sep; 13(13):1635-9. PubMed ID: 12352617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Site-Selection Strategy Based on Polarity Sensitivity for Cochlear Implants: Effects on Spectro-Temporal Resolution and Speech Perception.
    Goehring T; Archer-Boyd A; Deeks JM; Arenberg JG; Carlyon RP
    J Assoc Res Otolaryngol; 2019 Aug; 20(4):431-448. PubMed ID: 31161338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral Measures of Temporal Processing and Speech Perception in Cochlear Implant Users.
    Blankenship C; Zhang F; Keith R
    J Am Acad Audiol; 2016 Oct; 27(9):701-713. PubMed ID: 27718347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of electrode deactivation on speech recognition in multichannel cochlear implant recipients.
    Schvartz-Leyzac KC; Zwolan TA; Pfingst BE
    Cochlear Implants Int; 2017 Nov; 18(6):324-334. PubMed ID: 28793847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of programming parameters in children with the advanced bionics cochlear implant.
    Baudhuin J; Cadieux J; Firszt JB; Reeder RM; Maxson JL
    J Am Acad Audiol; 2012 May; 23(5):302-12. PubMed ID: 22533974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effects of Preprocessing Strategies for Pediatric Cochlear Implant Recipients.
    Rakszawski B; Wright R; Cadieux JH; Davidson LS; Brenner C
    J Am Acad Audiol; 2016 Feb; 27(2):85-102. PubMed ID: 26905529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic temporal modulation detection and speech perception in cochlear implant listeners.
    Won JH; Drennan WR; Nie K; Jameyson EM; Rubinstein JT
    J Acoust Soc Am; 2011 Jul; 130(1):376-88. PubMed ID: 21786906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.
    Winn MB; Won JH; Moon IJ
    Ear Hear; 2016; 37(6):e377-e390. PubMed ID: 27438871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dynamic range and amplitude mapping on phoneme recognition in Nucleus-22 cochlear implant users.
    Fu QJ; Shannon RV
    Ear Hear; 2000 Jun; 21(3):227-35. PubMed ID: 10890731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing temporal modulation sensitivity using electrically evoked auditory steady state responses.
    Luke R; Van Deun L; Hofmann M; van Wieringen A; Wouters J
    Hear Res; 2015 Jun; 324():37-45. PubMed ID: 25746913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benefit of a commercially available cochlear implant processor with dual-microphone beamforming: a multi-center study.
    Wolfe J; Parkinson A; Schafer EC; Gilden J; Rehwinkel K; Mansanares J; Coughlan E; Wright J; Torres J; Gannaway S
    Otol Neurotol; 2012 Jun; 33(4):553-60. PubMed ID: 22588233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal Modulation Detection Depends on Sharpness of Spatial Tuning.
    Zhou N; Cadmus M; Dong L; Mathews J
    J Assoc Res Otolaryngol; 2018 Jun; 19(3):317-330. PubMed ID: 29696448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Threshold Adjustment on Speech Perception in Nucleus Cochlear Implant Recipients.
    Busby PA; Arora K
    Ear Hear; 2016; 37(3):303-11. PubMed ID: 26671316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of slow temporal modulations in speech identification for cochlear implant users.
    Gnansia D; Lazard DS; Léger AC; Fugain C; Lancelin D; Meyer B; Lorenzi C
    Int J Audiol; 2014 Jan; 53(1):48-54. PubMed ID: 24195655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Hearing Performance for Cochlear Implant Recipients with Use of a Digital, Wireless, Remote-Microphone, Audio-Streaming Accessory.
    Wolfe J; Morais M; Schafer E
    J Am Acad Audiol; 2015 Jun; 26(6):532-9. PubMed ID: 26134720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.