These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23881282)

  • 1. Insights into metalloenzyme microenvironments: biomimetic metal complexes with a functional second coordination sphere.
    Zhao M; Wang HB; Ji LN; Mao ZW
    Chem Soc Rev; 2013 Nov; 42(21):8360-75. PubMed ID: 23881282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation.
    DiPrimio DJ; Holland PL
    J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?
    Reetz MT
    Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triazacyclophane (TAC)-scaffolded histidine and aspartic acid residues as mimics of non-heme metalloenzyme active sites.
    Albada HB; Soulimani F; Jacobs HJ; Versluis C; Weckhuysen BM; Liskamp RM
    Org Biomol Chem; 2012 Feb; 10(5):1088-92. PubMed ID: 22179680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Second-sphere coordination revisited.
    Liu Z; Schneebeli ST; Stoddart JF
    Chimia (Aarau); 2014; 68(5):315-20. PubMed ID: 24983807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial metalloenzymes via encapsulation of hydrophobic transition-metal catalysts in surface-crosslinked micelles (SCMs).
    Zhang S; Zhao Y
    Chem Commun (Camb); 2012 Oct; 48(80):9998-10000. PubMed ID: 22935642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere.
    Van Stappen C; Deng Y; Liu Y; Heidari H; Wang JX; Zhou Y; Ledray AP; Lu Y
    Chem Rev; 2022 Jul; 122(14):11974-12045. PubMed ID: 35816578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LmrR: A Privileged Scaffold for Artificial Metalloenzymes.
    Roelfes G
    Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective recognition of sulphate in a Cu(II) assisted 1D polymer of a simple pentafluorophenyl substituted pyridyl-urea via second sphere coordination.
    Akhuli B; Ghosh P
    Dalton Trans; 2013 Apr; 42(16):5818-25. PubMed ID: 23455151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition metal catalysis in confined spaces.
    Leenders SH; Gramage-Doria R; de Bruin B; Reek JN
    Chem Soc Rev; 2015 Jan; 44(2):433-48. PubMed ID: 25340992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Merging the best of two worlds: artificial metalloenzymes for enantioselective catalysis.
    Ringenberg MR; Ward TR
    Chem Commun (Camb); 2011 Aug; 47(30):8470-6. PubMed ID: 21603692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Group-10 metal complexes of biological molecules and related ligands: structural and functional properties.
    Shimazaki Y; Yamauchi O
    Chem Biodivers; 2012 Sep; 9(9):1635-58. PubMed ID: 22976959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular interactions between functional metal complexes and proteins.
    Davies CL; Dux EL; Duhme-Klair AK
    Dalton Trans; 2009 Dec; (46):10141-54. PubMed ID: 19921045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular catalysis. Part 2: artificial enzyme mimics.
    Raynal M; Ballester P; Vidal-Ferran A; van Leeuwen PW
    Chem Soc Rev; 2014 Mar; 43(5):1734-87. PubMed ID: 24365792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme mimics based upon supramolecular coordination chemistry.
    Wiester MJ; Ulmann PA; Mirkin CA
    Angew Chem Int Ed Engl; 2011 Jan; 50(1):114-37. PubMed ID: 20922725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic-level design of metalloenzyme-like active pockets in metal-organic frameworks for bioinspired catalysis.
    Xu W; Wu Y; Gu W; Du D; Lin Y; Zhu C
    Chem Soc Rev; 2024 Jan; 53(1):137-162. PubMed ID: 38018371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric catalysis with an inert chiral-at-metal iridium complex.
    Chen LA; Xu W; Huang B; Ma J; Wang L; Xi J; Harms K; Gong L; Meggers E
    J Am Chem Soc; 2013 Jul; 135(29):10598-601. PubMed ID: 23672419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptidic Scaffolds Enable Rapid and Multivariate Secondary Sphere Evolution for an Abiotic Metallocatalyst.
    Ghosh S; Tran PN; McElheny D; Perez JJ; Nguyen AI
    Inorg Chem; 2022 May; 61(17):6679-6687. PubMed ID: 35446044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Step into the Future: Applications of Nanoparticle Enzyme Mimics.
    Korschelt K; Tahir MN; Tremel W
    Chemistry; 2018 Jul; 24(39):9703-9713. PubMed ID: 29447433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.