These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 23881285)
1. Conversion of a non-selective adenosine receptor antagonist into A3-selective high affinity fluorescent probes using peptide-based linkers. Vernall AJ; Stoddart LA; Briddon SJ; Ng HW; Laughton CA; Doughty SW; Hill SJ; Kellam B Org Biomol Chem; 2013 Sep; 11(34):5673-82. PubMed ID: 23881285 [TBL] [Abstract][Full Text] [Related]
2. Highly potent and selective fluorescent antagonists of the human adenosine A₃ receptor based on the 1,2,4-triazolo[4,3-a]quinoxalin-1-one scaffold. Vernall AJ; Stoddart LA; Briddon SJ; Hill SJ; Kellam B J Med Chem; 2012 Feb; 55(4):1771-82. PubMed ID: 22277057 [TBL] [Abstract][Full Text] [Related]
3. Discovery of simplified N²-substituted pyrazolo[3,4-d]pyrimidine derivatives as novel adenosine receptor antagonists: efficient synthetic approaches, biological evaluations and molecular docking studies. Venkatesan G; Paira P; Cheong SL; Vamsikrishna K; Federico S; Klotz KN; Spalluto G; Pastorin G Bioorg Med Chem; 2014 Mar; 22(5):1751-65. PubMed ID: 24518296 [TBL] [Abstract][Full Text] [Related]
5. Influence of fluorophore and linker composition on the pharmacology of fluorescent adenosine A1 receptor ligands. Baker JG; Middleton R; Adams L; May LT; Briddon SJ; Kellam B; Hill SJ Br J Pharmacol; 2010 Feb; 159(4):772-86. PubMed ID: 20105183 [TBL] [Abstract][Full Text] [Related]
6. Direct visualisation of internalization of the adenosine A3 receptor and localization with arrestin3 using a fluorescent agonist. Stoddart LA; Vernall AJ; Briddon SJ; Kellam B; Hill SJ Neuropharmacology; 2015 Nov; 98():68-77. PubMed ID: 25937210 [TBL] [Abstract][Full Text] [Related]
8. Fluorescent-Labeled Selective Adenosine A Köse M; Gollos S; Karcz T; Fiene A; Heisig F; Behrenswerth A; Kieć-Kononowicz K; Namasivayam V; Müller CE J Med Chem; 2018 May; 61(10):4301-4316. PubMed ID: 29681156 [TBL] [Abstract][Full Text] [Related]
9. New fluorescent adenosine A1-receptor agonists that allow quantification of ligand-receptor interactions in microdomains of single living cells. Middleton RJ; Briddon SJ; Cordeaux Y; Yates AS; Dale CL; George MW; Baker JG; Hill SJ; Kellam B J Med Chem; 2007 Feb; 50(4):782-93. PubMed ID: 17249651 [TBL] [Abstract][Full Text] [Related]
10. Functionalized congener approach to the design of ligands for G protein-coupled receptors (GPCRs). Jacobson KA Bioconjug Chem; 2009 Oct; 20(10):1816-35. PubMed ID: 19405524 [TBL] [Abstract][Full Text] [Related]
11. Synthesis, Biological Evaluation, and Utility of Fluorescent Ligands Targeting the μ-Opioid Receptor. Schembri LS; Stoddart LA; Briddon SJ; Kellam B; Canals M; Graham B; Scammells PJ J Med Chem; 2015 Dec; 58(24):9754-67. PubMed ID: 26632862 [TBL] [Abstract][Full Text] [Related]
12. Exploring a 2-naphthoic acid template for the structure-based design of P2Y14 receptor antagonist molecular probes. Kiselev E; Barrett MO; Katritch V; Paoletta S; Weitzer CD; Brown KA; Hammes E; Yin AL; Zhao Q; Stevens RC; Harden TK; Jacobson KA ACS Chem Biol; 2014 Dec; 9(12):2833-42. PubMed ID: 25299434 [TBL] [Abstract][Full Text] [Related]
13. Identification of a red-emitting fluorescent ligand for in vitro visualization of human serotonin 5-HT(1A) receptors. Lacivita E; Masotti AC; Jafurulla M; Saxena R; Rangaraj N; Chattopadhyay A; Colabufo NA; Berardi F; Perrone R; Leopoldo M Bioorg Med Chem Lett; 2010 Nov; 20(22):6628-32. PubMed ID: 20888762 [TBL] [Abstract][Full Text] [Related]
15. Chemical biology-based approaches on fluorescent labeling of proteins in live cells. Jung D; Min K; Jung J; Jang W; Kwon Y Mol Biosyst; 2013 May; 9(5):862-72. PubMed ID: 23318293 [TBL] [Abstract][Full Text] [Related]
16. Red fluorescent turn-on ligands for imaging and quantifying G protein-coupled receptors in living cells. Karpenko IA; Kreder R; Valencia C; Villa P; Mendre C; Mouillac B; Mély Y; Hibert M; Bonnet D; Klymchenko AS Chembiochem; 2014 Feb; 15(3):359-63. PubMed ID: 24449564 [TBL] [Abstract][Full Text] [Related]
17. Arylacetamide-derived fluorescent probes: synthesis, biological evaluation, and direct fluorescent labeling of kappa opioid receptors in mouse microglial cells. Chang AC; Chao CC; Takemori AE; Gekker G; Hu S; Peterson PK; Portoghese PS J Med Chem; 1996 Apr; 39(8):1729-35. PubMed ID: 8648612 [TBL] [Abstract][Full Text] [Related]
18. Design and use of fluorescent ligands to study ligand-receptor interactions in single living cells. Briddon SJ; Kellam B; Hill SJ Methods Mol Biol; 2011; 746():211-36. PubMed ID: 21607859 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence microscopy investigations of ligand propagation and accessibility under adherent cells. Swift JL; Sergeev M; Wiseman PW Biointerphases; 2010 Dec; 5(4):139-48. PubMed ID: 21219035 [TBL] [Abstract][Full Text] [Related]
20. Selective fluorescent nonpeptidic antagonists for vasopressin V₂ GPCR: application to ligand screening and oligomerization assays. Loison S; Cottet M; Orcel H; Adihou H; Rahmeh R; Lamarque L; Trinquet E; Kellenberger E; Hibert M; Durroux T; Mouillac B; Bonnet D J Med Chem; 2012 Oct; 55(20):8588-602. PubMed ID: 22984902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]