These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 23881318)
41. Production of xylitol and tetrahydrofurfuryl alcohol from xylan in napier grass by a hydrothermal process with phosphorus oxoacids followed by aqueous phase hydrogenation. Takata E; Tsuruoka T; Tsutsumi K; Tsutsumi Y; Tabata K Bioresour Technol; 2014 Sep; 167():74-80. PubMed ID: 24971947 [TBL] [Abstract][Full Text] [Related]
42. Sucrose and Saccharomyces cerevisiae: a relationship most sweet. Marques WL; Raghavendran V; Stambuk BU; Gombert AK FEMS Yeast Res; 2016 Feb; 16(1):fov107. PubMed ID: 26658003 [TBL] [Abstract][Full Text] [Related]
43. Metabolic engineering as a tool for enhanced lactic acid production. Upadhyaya BP; DeVeaux LC; Christopher LP Trends Biotechnol; 2014 Dec; 32(12):637-44. PubMed ID: 25457813 [TBL] [Abstract][Full Text] [Related]
44. Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives. Salusjärvi L; Havukainen S; Koivistoinen O; Toivari M Appl Microbiol Biotechnol; 2019 Mar; 103(6):2525-2535. PubMed ID: 30707252 [TBL] [Abstract][Full Text] [Related]
45. Metabolism of glucose and xylose as single and mixed feed in Debaryomyces nepalensis NCYC 3413: production of industrially important metabolites. Kumar S; Gummadi SN Appl Microbiol Biotechnol; 2011 Mar; 89(5):1405-15. PubMed ID: 21085948 [TBL] [Abstract][Full Text] [Related]
46. [Preface for special issue on biobased chemicals (2013)]. Xing J Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1351-3. PubMed ID: 24432650 [TBL] [Abstract][Full Text] [Related]
47. Systems metabolic engineering in an industrial setting. Sagt CM Appl Microbiol Biotechnol; 2013 Mar; 97(6):2319-26. PubMed ID: 23397485 [TBL] [Abstract][Full Text] [Related]
48. Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain. Agrawal M; Mao Z; Chen RR Biotechnol Bioeng; 2011 Apr; 108(4):777-85. PubMed ID: 21404252 [TBL] [Abstract][Full Text] [Related]
49. Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Rao RS; Jyothi ChP; Prakasham RS; Sarma PN; Rao LV Bioresour Technol; 2006 Oct; 97(15):1974-8. PubMed ID: 16242318 [TBL] [Abstract][Full Text] [Related]
50. Purification of xylitol from fermented hemicellulosic hydrolyzate using liquid-liquid extraction and precipitation techniques. Mussatto SI; Santos JC; Filho WC; Silva SS Biotechnol Lett; 2005 Aug; 27(15):1113-5. PubMed ID: 16132861 [TBL] [Abstract][Full Text] [Related]
51. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
52. Metabolic engineering of industrial platform microorganisms for biorefinery applications--optimization of substrate spectrum and process robustness by rational and evolutive strategies. Buschke N; Schäfer R; Becker J; Wittmann C Bioresour Technol; 2013 May; 135():544-54. PubMed ID: 23260271 [TBL] [Abstract][Full Text] [Related]
53. Adaptation and reutilization of Candida guilliermondii cells for xylitol production in bagasse hydrolysate. Sene L; Felipe MG; Vitolo M; Silva SS; Mancilha IM J Basic Microbiol; 1998; 38(1):61-9. PubMed ID: 9542108 [TBL] [Abstract][Full Text] [Related]
54. Recent advances in synthetic biology for engineering isoprenoid production in yeast. Vickers CE; Williams TC; Peng B; Cherry J Curr Opin Chem Biol; 2017 Oct; 40():47-56. PubMed ID: 28623722 [TBL] [Abstract][Full Text] [Related]
55. Escherichia coli for biofuel production: bridging the gap from promise to practice. Huffer S; Roche CM; Blanch HW; Clark DS Trends Biotechnol; 2012 Oct; 30(10):538-45. PubMed ID: 22921756 [TBL] [Abstract][Full Text] [Related]
56. Postgenomic approaches to using corynebacteria as biocatalysts. Vertès AA; Inui M; Yukawa H Annu Rev Microbiol; 2012; 66():521-50. PubMed ID: 22803796 [TBL] [Abstract][Full Text] [Related]
57. Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of 'Biofuel'. Chandel AK; Singh OV Appl Microbiol Biotechnol; 2011 Mar; 89(5):1289-303. PubMed ID: 21181146 [TBL] [Abstract][Full Text] [Related]
58. Production of xylitol from Candida tropicalis by using an oxidation-reduction potential-stat controlled fermentation. Sheu DC; Duan KJ; Jou SR; Chen YC; Chen CW Biotechnol Lett; 2004 Feb; 26(4):2065-9. PubMed ID: 15055777 [TBL] [Abstract][Full Text] [Related]
59. Impact of the Penicillium chrysogenum genome on industrial production of metabolites. van den Berg MA Appl Microbiol Biotechnol; 2011 Oct; 92(1):45-53. PubMed ID: 21805169 [TBL] [Abstract][Full Text] [Related]
60. Xylitol production in immobilized cultures: a recent review. Pérez-Bibbins B; Torrado-Agrasar A; Salgado JM; Mussatto SI; Domínguez JM Crit Rev Biotechnol; 2016 Aug; 36(4):691-704. PubMed ID: 25665633 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]