BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23881419)

  • 1. A new experimental system for simultaneous application of cyclic tensile strain and fluid shear stress to tenocytes in vitro.
    Maeda E; Hagiwara Y; Wang JH; Ohashi T
    Biomed Microdevices; 2013 Dec; 15(6):1067-75. PubMed ID: 23881419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite element model predicts the mechanotransduction response of tendon cells to cyclic tensile loading.
    Lavagnino M; Arnoczky SP; Kepich E; Caballero O; Haut RC
    Biomech Model Mechanobiol; 2008 Oct; 7(5):405-16. PubMed ID: 17901992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Shearing-Stretching Device That Can Apply Physiological Fluid Shear Stress and Cyclic Stretch Concurrently to Endothelial Cells.
    Meza D; Abejar L; Rubenstein DA; Yin W
    J Biomech Eng; 2016 Mar; 138(3):4032550. PubMed ID: 26810848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cell adhesion motif, fiber stiffness, and cyclic strain on tenocyte gene expression in a tendon mimetic fiber composite hydrogel.
    Patel D; Sharma S; Screen HRC; Bryant SJ
    Biochem Biophys Res Commun; 2018 May; 499(3):642-647. PubMed ID: 29601813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of cellular strain with applied substrate strain in vitro.
    Wall ME; Weinhold PS; Siu T; Brown TD; Banes AJ
    J Biomech; 2007; 40(1):173-81. PubMed ID: 16403503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential regulation of gene expression in isolated tendon fascicles exposed to cyclic tensile strain in vitro.
    Maeda E; Shelton JC; Bader DL; Lee DA
    J Appl Physiol (1985); 2009 Feb; 106(2):506-12. PubMed ID: 19036888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechano-regulation of gap junction communications between tendon cells is dependent on the magnitude of tensile strain.
    Maeda E; Ohashi T
    Biochem Biophys Res Commun; 2015 Sep; 465(2):281-6. PubMed ID: 26260322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gap junction permeability between tenocytes within tendon fascicles is suppressed by tensile loading.
    Maeda E; Ye S; Wang W; Bader DL; Knight MM; Lee DA
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):439-47. PubMed ID: 21706231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a technique to determine strains in tendons using the cell nuclei.
    Screen HR; Lee DA; Bader DL; Shelton JC
    Biorheology; 2003; 40(1-3):361-8. PubMed ID: 12454427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tenocyte response to cyclical strain and transforming growth factor beta is dependent upon age and site of origin.
    Goodman SA; May SA; Heinegård D; Smith RK
    Biorheology; 2004; 41(5):613-28. PubMed ID: 15477668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time dependence of cyclic tensile strain on collagen production in tendon fascicles.
    Maeda E; Shelton JC; Bader DL; Lee DA
    Biochem Biophys Res Commun; 2007 Oct; 362(2):399-404. PubMed ID: 17719009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel mechanical bioreactor for concomitant fluid shear stress and substrate strain.
    Van Dyke WS; Sun X; Richard AB; Nauman EA; Akkus O
    J Biomech; 2012 Apr; 45(7):1323-7. PubMed ID: 22356846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recapitulating the Micromechanical Behavior of Tension and Shear in a Biomimetic Hydrogel for Controlling Tenocyte Response.
    Patel D; Sharma S; Bryant SJ; Screen HR
    Adv Healthc Mater; 2017 Feb; 6(4):. PubMed ID: 28026126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of exercise on tenocyte cellularity and tenocyte nuclear morphology in immature and mature equine digital tendons.
    Stanley RL; Goodship AE; Edwards B; Firth EC; Patterson-Kane JC
    Equine Vet J; 2008 Mar; 40(2):141-6. PubMed ID: 18093891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [In vitro tendon engineering using human dermal fibroblasts].
    Deng D; Liu W; Xu F; Wu XL; Wei X; Zhong B; Cui L; Cao YL
    Zhonghua Yi Xue Za Zhi; 2008 Apr; 88(13):914-8. PubMed ID: 18756959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-axial mechanical stimulation of HUVECs demonstrates that combined loading is not equivalent to the superposition of individual wall shear stress and tensile hoop stress components.
    Breen LT; McHugh PE; Murphy BP
    J Biomech Eng; 2009 Aug; 131(8):081001. PubMed ID: 19604013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of the Repression of Oxidative Stress on Tenocyte Differentiation: A Preliminary Study of a Rat Cell Model Using a Novel Differential Tensile Strain Bioreactor.
    Hsiao MY; Lin PC; Liao WH; Chen WS; Hsu CH; He CK; Wu YW; Gefen A; Iafisco M; Liu L; Lin FH
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical loading by fluid shear stress of myotube glycocalyx stimulates growth factor expression and nitric oxide production.
    Juffer P; Bakker AD; Klein-Nulend J; Jaspers RT
    Cell Biochem Biophys; 2014 Jul; 69(3):411-9. PubMed ID: 24402674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of strain and fluid shear stress in stimulating bone cell responses--a computational and experimental study.
    McGarry JG; Klein-Nulend J; Mullender MG; Prendergast PJ
    FASEB J; 2005 Mar; 19(3):482-4. PubMed ID: 15625080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced collagen type I synthesis by human tenocytes subjected to periodic in vitro mechanical stimulation.
    Huisman E; Lu A; McCormack RG; Scott A
    BMC Musculoskelet Disord; 2014 Nov; 15():386. PubMed ID: 25414072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.