These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23881589)

  • 1. Application of zeolites for radium removal from mine water.
    Chałupnik S; Franus W; Wysocka M; Gzyl G
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7900-6. PubMed ID: 23881589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long term changes in the concentration of radium in discharge waters of coal mines and Upper Silesian rivers.
    Chałupnik S; Wysocka M; Janson E; Chmielewska I; Wiesner M
    J Environ Radioact; 2017 May; 171():117-123. PubMed ID: 28235699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radium removal from mine waters in underground treatment installations.
    Chalupnik S; Wysocka M
    J Environ Radioact; 2008 Oct; 99(10):1548-52. PubMed ID: 18430497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contamination of settling ponds and rivers as a result of discharge of radium-bearing waters from Polish coal mines.
    Chalupnik S; Michalik B; Wysocka M; Skubacz K; Mielnikow A
    J Environ Radioact; 2001; 54(1):85-98. PubMed ID: 11379077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigations on the application of different synthetic zeolites for radium removal from water.
    Samolej K; Chalupnik S
    J Environ Radioact; 2021 Apr; 229-230():106529. PubMed ID: 33461097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters.
    Moreno N; Querol X; Ayora C; Pereira CF; Janssen-Jurkovicová M
    Environ Sci Technol; 2001 Sep; 35(17):3526-34. PubMed ID: 11563657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal).
    Antunes IMHR; Neiva AMR; Albuquerque MTD; Carvalho PCS; Santos ACT; Cunha PP
    Environ Geochem Health; 2018 Feb; 40(1):521-542. PubMed ID: 28343275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential chemical treatment of radium species in TENORM waste sludge produced from oil and natural gas production.
    El Afifi EM; Awwad NS; Hilal MA
    J Hazard Mater; 2009 Jan; 161(2-3):907-12. PubMed ID: 18514402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. (226)Ra measurement by LSC as a tool to assess the efficiency of a water treatment technology for removing radionuclides from groundwater.
    Suursoo S; Kiisk M; Al-Malahmeh A; Jantsikene A; Putk K; Lumiste L
    Appl Radiat Isot; 2014 Nov; 93():57-63. PubMed ID: 24593925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long term behaviour of radium rich deposits in a lake ecosystem.
    Michalik B; Wysocka M; Bonczyk M; Samolej K; Chmielewska I
    J Environ Radioact; 2020 Oct; 222():106349. PubMed ID: 32777669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of heavy metals from mine waters by natural zeolites.
    Wingenfelder U; Hansen C; Furrer G; Schulin R
    Environ Sci Technol; 2005 Jun; 39(12):4606-13. PubMed ID: 16047799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-precipitation of radium with barium and strontium sulfate and its impact on the fate of radium during treatment of produced water from unconventional gas extraction.
    Zhang T; Gregory K; Hammack RW; Vidic RD
    Environ Sci Technol; 2014 Apr; 48(8):4596-603. PubMed ID: 24670034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New perspectives on the passive treatment of ferruginous circumneutral mine waters in the UK.
    Sapsford DJ
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7827-36. PubMed ID: 23636592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention of radium from thermal waters on sand filters and adsorbents.
    Elejalde C; Herranz M; Idoeta R; Legarda F; Romero F; Baeza A
    J Hazard Mater; 2007 Jun; 144(3):645-8. PubMed ID: 17346877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe(O)/lignitic coal: an efficient and mechanically stable reactive material for purification of water containing heavy metals, radionuclides, and nitroaromatics.
    Jenk U; Schreyer J; Klinger C
    Environ Sci Technol; 2003 Feb; 37(3):644-51. PubMed ID: 12630484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estonian waterworks treatment plants: clearance of residues, discharge of effluents and efficiency of removal of radium from drinking water.
    Trotti F; Caldognetto E; Forte M; Nuccetelli C; Risica S; Rusconi R
    J Radiol Prot; 2013 Dec; 33(4):809-22. PubMed ID: 24047590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification of metal finishing waste waters with zeolites and activated carbons.
    Leinonen H; Lehto J
    Waste Manag Res; 2001 Feb; 19(1):45-57. PubMed ID: 11525475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mineral composition and heavy metal contamination of sediments originating from radium rich formation water.
    Bzowski Z; Michalik B
    Chemosphere; 2015 Mar; 122():79-87. PubMed ID: 25434264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radium isotopes in the Polish Outer Carpathian mineral waters of various chemical composition.
    Chau ND; Lucyna R; Jakub N; Paweł J
    J Environ Radioact; 2012 Oct; 112():38-44. PubMed ID: 22507354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The detailed analysis of natural radionuclides dissolved in spa waters of the Kłodzko Valley, Sudety Mountains, Poland.
    Walencik-Łata A; Kozłowska B; Dorda J; Przylibski TA
    Sci Total Environ; 2016 Nov; 569-570():1174-1189. PubMed ID: 27432727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.