BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 23881693)

  • 1. Chemical mechanisms of the toxicological properties of nanomaterials: generation of intracellular reactive oxygen species.
    Yan L; Gu Z; Zhao Y
    Chem Asian J; 2013 Oct; 8(10):2342-53. PubMed ID: 23881693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes.
    Yan L; Zhao F; Li S; Hu Z; Zhao Y
    Nanoscale; 2011 Feb; 3(2):362-82. PubMed ID: 21157592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the toxic mechanism of synthesized zinc oxide nanomaterials by physicochemical characterization and reactive oxygen species properties.
    Park SJ; Park YC; Lee SW; Jeong MS; Yu KN; Jung H; Lee JK; Kim JS; Cho MH
    Toxicol Lett; 2011 Dec; 207(3):197-203. PubMed ID: 21959085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of redox and inflammatory properties of pristine nanomaterials and commonly used semiconductor manufacturing nano-abrasives.
    Flaherty NL; Chandrasekaran A; del Pilar Sosa Peña M; Roth GA; Brenner SA; Begley TJ; Melendez JA
    Toxicol Lett; 2015 Dec; 239(3):205-15. PubMed ID: 26444223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabricated nanoparticles: current status and potential phytotoxic threats.
    Yadav T; Mungray AA; Mungray AK
    Rev Environ Contam Toxicol; 2014; 230():83-110. PubMed ID: 24609519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical responses upon the interaction of nanomaterials with cellular interfaces.
    Wu YL; Putcha N; Ng KW; Leong DT; Lim CT; Loo SC; Chen X
    Acc Chem Res; 2013 Mar; 46(3):782-91. PubMed ID: 23194178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Culture medium-associated physicochemical insights on the cytotoxicity of carbon nanomaterials.
    Kong H; Wang L; Zhu Y; Huang Q; Fan C
    Chem Res Toxicol; 2015 Mar; 28(3):290-5. PubMed ID: 25580995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide bacterial toxicity screening uncovers the mechanisms of toxicity of a cationic polystyrene nanomaterial.
    Ivask A; Suarez E; Patel T; Boren D; Ji Z; Holden P; Telesca D; Damoiseaux R; Bradley KA; Godwin H
    Environ Sci Technol; 2012 Feb; 46(4):2398-405. PubMed ID: 22148163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conceptual modeling for identification of worst case conditions in environmental risk assessment of nanomaterials using nZVI and C60 as case studies.
    Grieger KD; Hansen SF; Sørensen PB; Baun A
    Sci Total Environ; 2011 Sep; 409(19):4109-24. PubMed ID: 21737121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomaterial cytotoxicity is composition, size, and cell type dependent.
    Sohaebuddin SK; Thevenot PT; Baker D; Eaton JW; Tang L
    Part Fibre Toxicol; 2010 Aug; 7():22. PubMed ID: 20727197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene nanoplatelets spontaneously translocate into the cytosol and physically interact with cellular organelles in the fish cell line PLHC-1.
    Lammel T; Navas JM
    Aquat Toxicol; 2014 May; 150():55-65. PubMed ID: 24642293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology.
    Chen C; Li YF; Qu Y; Chai Z; Zhao Y
    Chem Soc Rev; 2013 Nov; 42(21):8266-303. PubMed ID: 23868609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomaterials and lung toxicity: interactions with airways cells and relevance for occupational health risk assessment.
    Bergamaschi E; Bussolati O; Magrini A; Bottini M; Migliore L; Bellucci S; Iavicoli I; Bergamaschi A
    Int J Immunopathol Pharmacol; 2006; 19(4 Suppl):3-10. PubMed ID: 17291399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights of mitochondria reactive oxygen species generation and cell apoptosis induced by low dose photodynamic therapy.
    Zhao H; Xing D; Chen Q
    Eur J Cancer; 2011 Dec; 47(18):2750-61. PubMed ID: 21741231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential.
    Winkler DA; Mombelli E; Pietroiusti A; Tran L; Worth A; Fadeel B; McCall MJ
    Toxicology; 2013 Nov; 313(1):15-23. PubMed ID: 23165187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragrance chemicals lyral and lilial decrease viability of HaCat cells' by increasing free radical production and lowering intracellular ATP level: protection by antioxidants.
    Usta J; Hachem Y; El-Rifai O; Bou-Moughlabey Y; Echtay K; Griffiths D; Nakkash-Chmaisse H; Makki RF
    Toxicol In Vitro; 2013 Feb; 27(1):339-48. PubMed ID: 22940465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.
    Carlson C; Hussain SM; Schrand AM; Braydich-Stolle LK; Hess KL; Jones RL; Schlager JJ
    J Phys Chem B; 2008 Oct; 112(43):13608-19. PubMed ID: 18831567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells.
    Zhang W; Yan L; Li M; Zhao R; Yang X; Ji T; Gu Z; Yin JJ; Gao X; Nie G
    Toxicol Lett; 2015 Sep; 237(2):61-71. PubMed ID: 26047786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondria are the main target organelle for trivalent monomethylarsonous acid (MMA(III))-induced cytotoxicity.
    Naranmandura H; Xu S; Sawata T; Hao WH; Liu H; Bu N; Ogra Y; Lou YJ; Suzuki N
    Chem Res Toxicol; 2011 Jul; 24(7):1094-103. PubMed ID: 21648415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.